Moron Maps and subspaces of N* under PFA

Alan Dow

Department of Mathematics University of North Carolina Charlotte

winter school 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Fix a function $\Phi : \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ which is a *lifting* of a mod fin homomorphism: (dually $\mathbb{N}^* \leftarrow f \mathbb{N}^*$, $\Phi(X) =^* f^{-1}(X^*)$) $\Phi(X) \cup \Phi(Y) =^* \Phi(X \cup Y)$; $\Phi(X) \cap \Phi(Y) =^* \Phi(X \cap Y)$; $\Phi(\emptyset) = \emptyset$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fix a function $\Phi : \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ which is a *lifting* of a mod fin homomorphism: (dually $\mathbb{N}^* \leftarrow f \mathbb{N}^*$, $\Phi(X) =^* f^{-1}(X^*)$) $\Phi(X) \cup \Phi(Y) =^* \Phi(X \cup Y)$; $\Phi(X) \cap \Phi(Y) =^* \Phi(X \cap Y)$; $\Phi(\emptyset) = \emptyset$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

as in the OCA discussion, $\mathcal{P}(\mathbb{N})$ is given the topology with $[s; n] = \{X \subset \mathbb{N} : X \cap n = s\}$ being the basic clopen sets

Fix a function $\Phi : \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ which is a *lifting* of a mod fin homomorphism: (dually $\mathbb{N}^* \leftarrow f \mathbb{N}^*$, $\Phi(X) =^* f^{-1}(X^*)$) $\Phi(X) \cup \Phi(Y) =^* \Phi(X \cup Y)$; $\Phi(X) \cap \Phi(Y) =^* \Phi(X \cap Y)$; $\Phi(\emptyset) = \emptyset$

as in the OCA discussion, $\mathcal{P}(\mathbb{N})$ is given the topology with $[s; n] = \{X \subset \mathbb{N} : X \cap n = s\}$ being the basic clopen sets

say that $I \in triv(\Phi)$ if there is an $h_I \in \mathbb{N}^I$ such that $\Phi(a) =^* h_I[a]$ for all $a \subset I$

Fix a function $\Phi : \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ which is a *lifting* of a mod fin homomorphism: (dually $\mathbb{N}^* \leftarrow f \mathbb{N}^*$, $\Phi(X) =^* f^{-1}(X^*)$) $\Phi(X) \cup \Phi(Y) =^* \Phi(X \cup Y)$; $\Phi(X) \cap \Phi(Y) =^* \Phi(X \cap Y)$; $\Phi(\emptyset) = \emptyset$

as in the OCA discussion, $\mathcal{P}(\mathbb{N})$ is given the topology with $[s; n] = \{X \subset \mathbb{N} : X \cap n = s\}$ being the basic clopen sets

say that $I \in triv(\Phi)$ if there is an $h_I \in \mathbb{N}^I$ such that $\Phi(a) =^* h_I[a]$ for all $a \subset I$

A D F A 同 F A E F A E F A Q A

note that h_l is continuous as a map on $\mathcal{P}(l)$

Fix a function $\Phi : \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ which is a *lifting* of a mod fin homomorphism: (dually $\mathbb{N}^* \leftarrow f \mathbb{N}^*$, $\Phi(X) = f^{-1}(X^*)$) $\Phi(X) \cup \Phi(Y) = \Phi(X \cup Y)$; $\Phi(X) \cap \Phi(Y) = \Phi(X \cap Y)$; $\Phi(\emptyset) = \emptyset$

as in the OCA discussion, $\mathcal{P}(\mathbb{N})$ is given the topology with $[s; n] = \{X \subset \mathbb{N} : X \cap n = s\}$ being the basic clopen sets

say that $I \in triv(\Phi)$ if there is an $h_I \in \mathbb{N}^I$ such that $\Phi(a) =^* h_I[a]$ for all $a \subset I$

A D F A 同 F A E F A E F A Q A

note that h_l is continuous as a map on $\mathcal{P}(l)$

if there is a continuous lifting then Φ is trivial.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Suppose *F* is a Borel lifting of automorphism Φ (continuous on dense $G_{\delta} \mathcal{X}$)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose *F* is a Borel lifting of automorphism Φ (continuous on dense $G_{\delta} \mathcal{X}$)

Let g_1, g_2 be generics for the poset $\{[s; n] : s \subset n \in \mathbb{N}\}$

Suppose *F* is a Borel lifting of automorphism Φ (continuous on dense $G_{\delta} \mathcal{X}$)

A D F A 同 F A E F A E F A Q A

Let g_1, g_2 be generics for the poset $\{[s; n] : s \subset n \in \mathbb{N}\}$

Then $F(g_1)$ and $F(g_2)$ are defined, but $\Phi(g_i)$ are not;

 $\exists [s_1; n], [s_2; n] \Vdash (F(g_1) \star F(g_2)) \Delta F(g_1 \star g_2) \subset n$ where \star is one of $\{\cap, \cup, \Delta, -\}$

Suppose *F* is a Borel lifting of automorphism Φ (continuous on dense $G_{\delta} \mathcal{X}$)

Let g_1, g_2 be generics for the poset $\{[s; n] : s \subset n \in \mathbb{N}\}$

Then $F(g_1)$ and $F(g_2)$ are defined, but $\Phi(g_i)$ are not;

 $\exists [s_1; n], [s_2; n] \Vdash (F(g_1) \star F(g_2)) \Delta F(g_1 \star g_2) \subset n$ where \star is one of $\{\cap, \cup, \Delta, -\}$ also $(\exists \tilde{n} > n) \forall s, t \subset n \text{ (and extend } s_1, s_2 \text{ with } s_1 \Delta s_2 \subset n)$ $[s_1; n], [s_2; n] \Vdash F(s \cup g_1 - n) - \tilde{n} = F(t \cup g_1 - n) - \tilde{n}$

A D F A 同 F A E F A E F A Q A

Suppose *F* is a Borel lifting of automorphism Φ (continuous on dense $G_{\delta} \mathcal{X}$)

Let g_1, g_2 be generics for the poset $\{[s; n] : s \subset n \in \mathbb{N}\}$

Then $F(g_1)$ and $F(g_2)$ are defined, but $\Phi(g_i)$ are not;

 $\exists [s_1; n], [s_2; n] \Vdash (F(g_1) \star F(g_2)) \Delta F(g_1 \star g_2) \subset n$ where \star is one of $\{\cap, \cup, \Delta, -\}$ also $(\exists \tilde{n} > n) \forall s, t \subset n$ (and extend s_1, s_2 with $s_1 \Delta s_2 \subset n$) $[s_1; n], [s_2; n] \Vdash F(s \cup g_1 - n) - \tilde{n} = F(t \cup g_1 - n) - \tilde{n}$

otherwise meeting countably many dense sets, including some to get inside dense G_{δ} set \mathcal{X} , we find $v_1, v_2 \subset \mathbb{N}$ yielding, e.g. $\Phi(v_1) \star \Phi(v_2) =^* F(v_1) \star F(v_2) \neq^* F(v_1 \star v_2) =^* \Phi(v_1 \star v_2)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Now in the extension: by continuity for $a \in \mathcal{X}$

$$\Phi(a) =^* F_1(a) = \lim_m F_1((a \cap m) \cup g_i - m)$$
 and
 $F_1(a) = \lim_m F_1((a \cap m) \cup (g_1 \star g_2) - m)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Now in the extension: by continuity for $a \in \mathcal{X}$

$$\Phi(a) =^* F_1(a) = \lim_m F_1((a \cap m) \cup g_i - m) \text{ and }$$

$$F_1(a) = \lim_m F_1((a \cap m) \cup (g_1 \star g_2) - m)$$

and for $a, b \in \mathcal{X}$

$$\Phi(a \star b) =^* \Phi(a) \star \Phi(b) =^* F_1(a) \star F_1(b) = F_1(a \star b)$$

Now in the extension: by continuity for $a \in \mathcal{X}$

$$\Phi(a) =^{*} F_{1}(a) = \lim_{m} F_{1}((a \cap m) \cup g_{i} - m) \text{ and}$$

$$F_{1}(a) = \lim_{m} F_{1}((a \cap m) \cup (g_{1} \star g_{2}) - m)$$

and for $a, b \in \mathcal{X}$

$$\Phi(a \star b) =^{*} \Phi(a) \star \Phi(b) =^{*} F_{1}(a) \star F_{1}(b) = F_{1}(a \star b)$$

little bit easy exercise, ($\forall x \subset \mathbb{N}$), there are $a, b \in \mathcal{X}$ such that $x = a\Delta b$,

hence F_1 has a unique continuous extension, \tilde{F} , to $\mathcal{P}(\mathbb{N})$, and this is a *pure* lifting

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Now in the extension: by continuity for $a \in \mathcal{X}$

$$\Phi(a) =^{*} F_{1}(a) = \lim_{m} F_{1}((a \cap m) \cup g_{i} - m) \text{ and}$$

$$F_{1}(a) = \lim_{m} F_{1}((a \cap m) \cup (g_{1} \star g_{2}) - m)$$

and for $a, b \in \mathcal{X}$

$$\Phi(a \star b) =^{*} \Phi(a) \star \Phi(b) =^{*} F_{1}(a) \star F_{1}(b) = F_{1}(a \star b)$$

little bit easy exercise, ($\forall x \subset \mathbb{N}$), there are $a, b \in \mathcal{X}$ such that $x = a\Delta b$,

hence F_1 has a unique continuous extension, \tilde{F} , to $\mathcal{P}(\mathbb{N})$, and this is a *pure* lifting

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Now in the extension: by continuity for $a \in \mathcal{X}$

$$\Phi(a) =^* F_1(a) = \lim_m F_1((a \cap m) \cup g_i - m) \text{ and}$$

$$F_1(a) = \lim_m F_1((a \cap m) \cup (g_1 \star g_2) - m)$$

and for $a, b \in \mathcal{X}$

$$\Phi(a \star b) =^* \Phi(a) \star \Phi(b) =^* F_1(a) \star F_1(b) = F_1(a \star b)$$

little bit easy exercise, $(\forall x \subset \mathbb{N})$, there are $a, b \in \mathcal{X}$ such that $x = a \Delta b$,

hence F_1 has a unique continuous extension, \tilde{F} , to $\mathcal{P}(\mathbb{N})$, and this is a *pure* lifting

now define $h(i) \in \tilde{F}(\{i\})$ for $a \in \mathcal{X}$ and check that h induces Φ

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.

(skipping) proof: Assume that $F : \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ is a continuous function (after forcing with $2^{<\omega}$) and that $F(X) =^* \Phi(X)$ for all $X \in \mathcal{P}(\mathbb{N})$. Put $X \in \mathbb{X}_{p,n}$ providing $p \Vdash F(X) \setminus n = \Phi(X) \setminus n$. Find p, n and $s \subset n$ such that $\mathbb{X}_{p,n}$ is dense in [s; n]

Let $Y \in [s; n] \cap V$ and let $\{X_k : k \in \omega\} \subset \mathbb{X}_{p,n} \cap [s; n]$ converge to *Y*. Then $p \Vdash F(Y) = \lim_k F(X_k) =^* \Phi(Y)$, hence $F(Y) \in V$.

Thus, $\Phi_s(X) = \Phi(s \cup (X \setminus n))$ is a continuous lifting for the same homomorphism.

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.

(ロ) (同) (三) (三) (三) (○) (○)

more Borel map and Cohen connection:

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.

more Borel map and Cohen connection:

If \dot{Y} is a Cohen (i.e. $P = \{[s; n] : s \subset n \in \mathbb{N}\}$) name of $\subset \mathbb{N}$, then there is a Borel map (continuous on a dense G_{δ}) $F_{\dot{Y}}$ such that, in the extension, $F_{\dot{Y}}(g) = val_g(\dot{Y})$

(日) (日) (日) (日) (日) (日) (日)

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.

more Borel map and Cohen connection:

If \dot{Y} is a Cohen (i.e. $P = \{[s; n] : s \subset n \in \mathbb{N}\}$) name of $\subset \mathbb{N}$, then there is a Borel map (continuous on a dense G_{δ}) $F_{\dot{Y}}$ such that, in the extension, $F_{\dot{Y}}(g) = val_g(\dot{Y})$

AND, **Lemma** there are $x \subset a \subset \mathbb{N}$, $\mathbb{N} \setminus a \notin triv(\Phi)$ such that $\Vdash F_{\dot{Y}}(x \cup (g \setminus a)) \cap \Phi(a) \neq^* \Phi(x)$

i.e. $\Vdash_{P_{x,a}} \dot{Y} \cap \Phi(a) \neq^* \Phi(x)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

there is quite a tricky step to this theorem which seems to simplify if we again throw Cohen forcing at it.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

there is quite a tricky step to this theorem which seems to simplify if we again throw Cohen forcing at it.

there is quite a tricky step to this theorem which seems to simplify if we again throw Cohen forcing at it.

Assume that $\{F_n : n \in \omega\}$ is a family of Borel functions on $\mathcal{P}(\mathbb{N})$ such that for all $X \subset \mathbb{N}$, there is an *n* such that $\Phi(X) = F_n(X)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

there is quite a tricky step to this theorem which seems to simplify if we again throw Cohen forcing at it.

Assume that $\{F_n : n \in \omega\}$ is a family of Borel functions on $\mathcal{P}(\mathbb{N})$ such that for all $X \subset \mathbb{N}$, there is an *n* such that $\Phi(X) = F_n(X)$.

Apply above Lemma to obtain $x_0 \subset a_0 \subset \mathbb{N}$ with $\mathbb{N} \setminus a_0 \notin triv(\Phi)$, and $\Vdash F_0(x_0 \cup (g \setminus a_0)) \cap \Phi(a_0) \neq^* \Phi(x_0)$

(日) (日) (日) (日) (日) (日) (日)

there is quite a tricky step to this theorem which seems to simplify if we again throw Cohen forcing at it.

Assume that $\{F_n : n \in \omega\}$ is a family of Borel functions on $\mathcal{P}(\mathbb{N})$ such that for all $X \subset \mathbb{N}$, there is an *n* such that $\Phi(X) = F_n(X)$.

Apply above Lemma to obtain $x_0 \subset a_0 \subset \mathbb{N}$ with $\mathbb{N} \setminus a_0 \notin triv(\Phi)$, and $\Vdash F_0(x_0 \cup (g \setminus a_0)) \cap \Phi(a_0) \neq^* \Phi(x_0)$

this hands us countably many dense sets that we must protect

A D F A 同 F A E F A E F A Q A

σ -Borel, Borel, continuous are all the same

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

$\sigma\text{-}\mathsf{Borel},$ Borel, continuous are all the same

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Claim: (there is) x_0 such that for comeager many $v \subset b_0$, $F_0(x_0 \cup v) \cap \Phi(a_0) \neq^* \Phi(x_0)$.

$\sigma\text{-}\mathsf{Borel},$ Borel, continuous are all the same

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Claim: (there is) x_0 such that for comeager many $v \subset b_0$, $F_0(x_0 \cup v) \cap \Phi(a_0) \neq^* \Phi(x_0)$.

$\sigma\text{-}\mathsf{Borel},$ Borel, continuous are all the same

Claim: (there is) x_0 such that for comeager many $v \subset b_0$, $F_0(x_0 \cup v) \cap \Phi(a_0) \neq^* \Phi(x_0)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$\sigma\text{-Borel},$ Borel, continuous are all the same

Claim: (there is) x_0 such that for comeager many $v \subset b_0$, $F_0(x_0 \cup v) \cap \Phi(a_0) \neq^* \Phi(x_0)$.

repeat this, obtaining $x_k \subset a_k \subset b_{k-1}$ so that $\Phi(x_k) \neq^* F_k(x_0 \cup \cdots x_k \cup v) \cap \Phi(a_k)$ for comeager many $v \subset b_k = b_{k-1} \setminus a_k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$\sigma\text{-Borel},$ Borel, continuous are all the same

Claim: (there is) x_0 such that for comeager many $v \subset b_0$, $F_0(x_0 \cup v) \cap \Phi(a_0) \neq^* \Phi(x_0)$.

repeat this, obtaining $x_k \subset a_k \subset b_{k-1}$ so that $\Phi(x_k) \neq^*$ $F_k(x_0 \cup \cdots x_k \cup v) \cap \Phi(a_k)$ for comeager many $v \subset b_k$ $= b_{k-1} \setminus a_k$. Also carefully ensure that $v = \bigcup_{j>k} x_j$ lands you in the appropriate comeager sets.

σ -Borel, Borel, continuous are all the same

Claim: (there is) x_0 such that for comeager many $v \subset b_0$, $F_0(x_0 \cup v) \cap \Phi(a_0) \neq^* \Phi(x_0).$

otherwise, let g be $\mathcal{P}(b_0)$ -generic, and set H(x) = $F_0(x \cup g) \cap \Phi(a_0)$ and we have Cohen added a continuous lifting for $\Phi \upharpoonright \mathcal{P}(a_0)$

repeat this, obtaining $x_k \subset a_k \subset b_{k-1}$ so that $\Phi(x_k) \neq^*$ $F_k(x_0 \cup \cdots x_k \cup v) \cap \Phi(a_k)$ for comeager many $v \subset b_k$ $= b_{k-1} \setminus a_k$. Also carefully ensure that $v = \bigcup_{i>k} x_i$ lands you in the appropriate comeager sets. Then $\Phi(v) \neq F_k(v)$ for all k.

Shelah-Steprans Q and A; Step 1

More Cohen forcing connections.

More Cohen forcing connections.

Lemma 1 again: Let \dot{Y} be a $P = [\mathbb{N}]^{<\omega}$ -name of a subset of \mathbb{N} and Φ be a homomorphism. Let $\dot{Y} \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $triv(\Phi)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

More Cohen forcing connections.

Lemma 1 again: Let \dot{Y} be a $P = [\mathbb{N}]^{<\omega}$ -name of a subset of \mathbb{N} and Φ be a homomorphism. Let $\dot{Y} \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $triv(\Phi)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For
$$x \subset a \subset b$$
, $P_{x,a} = \{p \in P : p \cap a = x \cap \max(p)\}$.

More Cohen forcing connections.

Lemma 1 again: Let \dot{Y} be a $P = [\mathbb{N}]^{<\omega}$ -name of a subset of \mathbb{N} and Φ be a homomorphism. Let $\dot{Y} \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $triv(\Phi)$.

For $x \subset a \subset b$, $P_{x,a} = \{p \in P : p \cap a = x \cap \max(p)\}$. We assume *b* is one of the "many" sets *b* so that for all $x \subset a \subset b$, $D \cap P_{x,a}$ is dense in $P_{x,a}$ for all $D \in \mathfrak{D} \cap M$.

(日) (日) (日) (日) (日) (日) (日)

More Cohen forcing connections.

Lemma 1 again: Let \dot{Y} be a $P = [\mathbb{N}]^{<\omega}$ -name of a subset of \mathbb{N} and Φ be a homomorphism. Let $\dot{Y} \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $triv(\Phi)$.

For $x \subset a \subset b$, $P_{x,a} = \{p \in P : p \cap a = x \cap \max(p)\}$. We assume *b* is one of the "many" sets *b* so that for all $x \subset a \subset b$, $D \cap P_{x,a}$ is dense in $P_{x,a}$ for all $D \in \mathfrak{D} \cap M$.

(日) (日) (日) (日) (日) (日) (日)

If *g* is *P*-generic, then $g_{x,a} = x \cup (g \setminus a)$ is generic for $P_{x,a}$.

More Cohen forcing connections.

Lemma 1 again: Let \dot{Y} be a $P = [\mathbb{N}]^{<\omega}$ -name of a subset of \mathbb{N} and Φ be a homomorphism. Let $\dot{Y} \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $triv(\Phi)$.

For $x \subset a \subset b$, $P_{x,a} = \{p \in P : p \cap a = x \cap \max(p)\}$. We assume *b* is one of the "many" sets *b* so that for all $x \subset a \subset b$, $D \cap P_{x,a}$ is dense in $P_{x,a}$ for all $D \in \mathfrak{D} \cap M$.

If *g* is *P*-generic, then $g_{x,a} = x \cup (g \setminus a)$ is generic for $P_{x,a}$.

In V[g], we know that $F_{\dot{Y}}$ is Borel on $\mathcal{P}(a)$. and that there are $x \subset a \subset b$ with $b \setminus a \notin triv(\Phi)$

More Cohen forcing connections.

Lemma 1 again: Let \dot{Y} be a $P = [\mathbb{N}]^{<\omega}$ -name of a subset of \mathbb{N} and Φ be a homomorphism. Let $\dot{Y} \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $triv(\Phi)$.

For $x \subset a \subset b$, $P_{x,a} = \{p \in P : p \cap a = x \cap \max(p)\}$. We assume *b* is one of the "many" sets *b* so that for all $x \subset a \subset b$, $D \cap P_{x,a}$ is dense in $P_{x,a}$ for all $D \in \mathfrak{D} \cap M$.

If *g* is *P*-generic, then $g_{x,a} = x \cup (g \setminus a)$ is generic for $P_{x,a}$.

In V[g], we know that $F_{\dot{Y}}$ is Borel on $\mathcal{P}(a)$. and that there are $x \subset a \subset b$ with $b \setminus a \notin triv(\Phi)$

such that $1 \Vdash_{P_{x,a}} \Phi(x) \neq^* \dot{Y}_{g_{x,a}} \cap \Phi(a)$.

recursively construct $\mathcal{A} = \{a_{\xi} \supset x_{\xi} : \xi \in \omega_1\}$ as above, so that $\mathcal{A} = \{a_{\xi} : \xi \in \omega_1\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi} =^* x_{\xi}$ for $\xi < \alpha$, and $\mathbb{N} \setminus a_{\alpha} \notin triv(\Phi)$

recursively construct $\mathcal{A} = \{a_{\xi} \supset x_{\xi} : \xi \in \omega_1\}$ as above, so that $\mathcal{A} = \{a_{\xi} : \xi \in \omega_1\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi} =^* x_{\xi}$ for $\xi < \alpha$, and $\mathbb{N} \setminus a_{\alpha} \notin triv(\Phi)$ Define $Q_{\alpha} \subset [\mathbb{N}]^{<\omega} \times [\alpha]^{<\omega}$ by $(q, J) \in Q_{\alpha}$ implies $(x_{\xi} \cap a_n) \Delta x_n \subset \max q$ for $\xi < \eta \in J$

recursively construct $\mathcal{A} = \{a_{\xi} \supset x_{\xi} : \xi \in \omega_1\}$ as above, so that $\mathcal{A} = \{a_{\xi} : \xi \in \omega_1\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi} =^* x_{\xi}$ for $\xi < \alpha$, and $\mathbb{N} \setminus a_{\alpha} \notin triv(\Phi)$ Define $Q_{\alpha} \subset [\mathbb{N}]^{<\omega} \times [\alpha]^{<\omega}$ by

 $(q, J) \in Q_{\alpha}$ implies $(x_{\xi} \cap a_{\eta})\Delta x_{\eta} \subset \max q$ for $\xi < \eta \in J$ and ordered (so as to mimic $P_{x_{\xi}, a_{\xi}}$ for all $\xi < \alpha$)

recursively construct $\mathcal{A} = \{a_{\xi} \supset x_{\xi} : \xi \in \omega_1\}$ as above, so that $\mathcal{A} = \{a_{\xi} : \xi \in \omega_1\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi} =^* x_{\xi}$ for $\xi < \alpha$, and $\mathbb{N} \setminus a_{\alpha} \notin triv(\Phi)$ Define $Q_{\alpha} \subset [\mathbb{N}]^{<\omega} \times [\alpha]^{<\omega}$ by

 $(q, J) \in Q_{\alpha}$ implies $(x_{\xi} \cap a_{\eta})\Delta x_{\eta} \subset \max q$ for $\xi < \eta \in J$ and ordered (so as to mimic $P_{x_{\xi}, a_{\xi}}$ for all $\xi < \alpha$) (p, H) < (q, J) implies $(p \setminus \max(q)) \cap a_{\xi} = x_{\xi} \cap (\max(q), \max(p)]$ for all $\xi \in J$.

recursively construct $\mathcal{A} = \{a_{\xi} \supset x_{\xi} : \xi \in \omega_1\}$ as above, so that $\mathcal{A} = \{a_{\xi} : \xi \in \omega_1\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi} =^* x_{\xi}$ for $\xi < \alpha$, and $\mathbb{N} \setminus a_{\alpha} \notin triv(\Phi)$ Define $Q_{\alpha} \subset [\mathbb{N}]^{<\omega} \times [\alpha]^{<\omega}$ by

 $(q, J) \in Q_{\alpha}$ implies $(x_{\xi} \cap a_{\eta}) \Delta x_{\eta} \subset \max q$ for $\xi < \eta \in J$ and ordered (so as to mimic $P_{x_{\xi}, a_{\xi}}$ for all $\xi < \alpha$) (p, H) < (q, J) implies $(p \setminus \max(q)) \cap a_{\xi} = x_{\xi} \cap (\max(q), \max(p)]$ for all $\xi \in J$.

Simultaneously be selecting an increasing chain (\Diamond) of countable elementary submodels so that $Q_{\alpha} \in M_{\alpha}$ and the choice of a_{α} ensures all dense $D \subset Q_{\alpha}$ from M_{α} remain dense in $Q_{\alpha+1}$. (at limits there's a P-ideal issue)

recursively construct $\mathcal{A} = \{a_{\xi} \supset x_{\xi} : \xi \in \omega_1\}$ as above, so that $\mathcal{A} = \{a_{\xi} : \xi \in \omega_1\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi} =^* x_{\xi}$ for $\xi < \alpha$, and $\mathbb{N} \setminus a_{\alpha} \notin triv(\Phi)$ Define $Q_{\alpha} \subset [\mathbb{N}]^{<\omega} \times [\alpha]^{<\omega}$ by

 $(q, J) \in Q_{\alpha}$ implies $(x_{\xi} \cap a_{\eta})\Delta x_{\eta} \subset \max q$ for $\xi < \eta \in J$ and ordered (so as to mimic $P_{x_{\xi}, a_{\xi}}$ for all $\xi < \alpha$) (p, H) < (q, J) implies $(p \setminus \max(q)) \cap a_{\xi} = x_{\xi} \cap (\max(q), \max(p)]$ for all $\xi \in J$.

Simultaneously be selecting an increasing chain (\Diamond) of countable elementary submodels so that $Q_{\alpha} \in M_{\alpha}$ and the choice of a_{α} ensures all dense $D \subset Q_{\alpha}$ from M_{α} remain dense in $Q_{\alpha+1}$. (at limits there's a P-ideal issue)

Also ensure that for all $Y \in M_{\alpha}$ which are Q_{α} -names, $Yg_{x_{\alpha},a_{\alpha}} \cap \Phi(a_{\alpha}) \neq^{*} \Phi(x_{\alpha}).$

One of the roles the models M_{α} is to ensure that Q_{ω_1} (or $Q_{\mathcal{A}}$) is ccc (easy-ish \diamond argument).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

One of the roles the models M_{α} is to ensure that Q_{ω_1} (or $Q_{\mathcal{A}}$) is ccc (easy-ish \diamond argument).

(ロ) (同) (三) (三) (三) (○) (○)

Thus if Y is a nice Q_{ω_1} -name of a subset of \mathbb{N} , there is an α such that $Y \in M_{\alpha}$.

One of the roles the models M_{α} is to ensure that Q_{ω_1} (or $Q_{\mathcal{A}}$) is ccc (easy-ish \diamond argument).

Thus if \dot{Y} is a nice Q_{ω_1} -name of a subset of \mathbb{N} , there is an α such that $\dot{Y} \in M_{\alpha}$.

Let $G \subset Q_{\omega_1}$ be generic and let $g = \bigcup \{p : \exists H \ (p, H) \in G\}$. For each $\alpha \in \omega_1$, there is a p_α so that $(p_\alpha, \{\alpha\}) \in G$, and with $p_\alpha \subset n_\alpha$ we have that $(g \cap a_\alpha) \Delta x_\alpha \subset n_\alpha$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

One of the roles the models M_{α} is to ensure that Q_{ω_1} (or $Q_{\mathcal{A}}$) is ccc (easy-ish \diamond argument).

Thus if \dot{Y} is a nice Q_{ω_1} -name of a subset of \mathbb{N} , there is an α such that $\dot{Y} \in M_{\alpha}$.

Let $G \subset Q_{\omega_1}$ be generic and let $g = \bigcup \{p : \exists H \ (p, H) \in G\}$. For each $\alpha \in \omega_1$, there is a p_α so that $(p_\alpha, \{\alpha\}) \in G$, and with $p_\alpha \subset n_\alpha$ we have that $(g \cap a_\alpha)\Delta x_\alpha \subset n_\alpha$.

The choice of $a_{\alpha} \supset x_{\alpha}$ and the fact that $g =^* x_{\alpha} \cup (g \setminus a_{\alpha})$ is sufficiently $(Q_{\alpha})_{x_{\alpha},a_{\alpha}}$ -generic, we have that $\dot{Y}_g \cap \Phi(a_{\alpha}) \neq^* \Phi(x_{\alpha})$.

(日) (日) (日) (日) (日) (日) (日)

One of the roles the models M_{α} is to ensure that Q_{ω_1} (or $Q_{\mathcal{A}}$) is ccc (easy-ish \diamond argument).

Thus if \dot{Y} is a nice Q_{ω_1} -name of a subset of \mathbb{N} , there is an α such that $\dot{Y} \in M_{\alpha}$.

Let $G \subset Q_{\omega_1}$ be generic and let $g = \bigcup \{p : \exists H \ (p, H) \in G\}$. For each $\alpha \in \omega_1$, there is a p_α so that $(p_\alpha, \{\alpha\}) \in G$, and with $p_\alpha \subset n_\alpha$ we have that $(g \cap a_\alpha) \Delta x_\alpha \subset n_\alpha$.

The choice of $a_{\alpha} \supset x_{\alpha}$ and the fact that $g =^{*} x_{\alpha} \cup (g \setminus a_{\alpha})$ is sufficiently $(Q_{\alpha})_{x_{\alpha},a_{\alpha}}$ -generic, we have that $\dot{Y}_{g} \cap \Phi(a_{\alpha}) \neq^{*} \Phi(x_{\alpha})$.

All this adds up to $\{c_{\alpha} = \Phi(x_{\alpha}), d_{\alpha} = \Phi(a_{\alpha} \setminus x_{\alpha}) : \alpha \in \omega_1\}$ is a *freezable* gap (while $\{x_{\alpha}, (a_{\alpha} \setminus x_{\alpha})\}$ is split by *g*).

pulling it all back via PFA, there is a sequence $\{a_{\alpha} \supset x_{\alpha} : \alpha \in \omega_1\}$ and a set $X \subset \mathbb{N}$ such that $X \cap a_{\alpha} =^* x_{\alpha}$ for all α , but, there is no set Y such that $Y \cap F(a_{\alpha}) =^* F(x_{\alpha})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

pulling it all back via PFA, there is a sequence $\{a_{\alpha} \supset x_{\alpha} : \alpha \in \omega_1\}$ and a set $X \subset \mathbb{N}$ such that $X \cap a_{\alpha} =^* x_{\alpha}$ for all α , but, there is no set Y such that $Y \cap F(a_{\alpha}) =^* F(x_{\alpha})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

so it must fail. which means $triv(\Phi) \neq \emptyset$

pulling it all back via PFA, there is a sequence $\{a_{\alpha} \supset x_{\alpha} : \alpha \in \omega_1\}$ and a set $X \subset \mathbb{N}$ such that $X \cap a_{\alpha} =^* x_{\alpha}$ for all α , but, there is no set Y such that $Y \cap F(a_{\alpha}) =^* F(x_{\alpha})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

so it must fail. which means $triv(\Phi) \neq \emptyset$

in any event,

pulling it all back via PFA, there is a sequence $\{a_{\alpha} \supset x_{\alpha} : \alpha \in \omega_1\}$ and a set $X \subset \mathbb{N}$ such that $X \cap a_{\alpha} =^* x_{\alpha}$ for all α , but, there is no set Y such that $Y \cap F(a_{\alpha}) =^* F(x_{\alpha})$.

so it must fail. which means $triv(\Phi) \neq \emptyset$

in any event,

Theorem: if we are stuck in choosing $a_{\alpha} \supset x_{\alpha}$, it is because $triv(\Phi)$ is ccc over fin and $\Vdash_{Q_{\alpha}} \Phi \upharpoonright \{a_{\beta} : \beta < \alpha\}^{\perp} \cap V = \mathcal{J}$ is σ -Borel. (hence trivial on each $b \in \mathcal{J}$)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

pulling it all back via PFA, there is a sequence $\{a_{\alpha} \supset x_{\alpha} : \alpha \in \omega_1\}$ and a set $X \subset \mathbb{N}$ such that $X \cap a_{\alpha} =^* x_{\alpha}$ for all α , but, there is no set Y such that $Y \cap F(a_{\alpha}) =^* F(x_{\alpha})$.

so it must fail. which means $triv(\Phi) \neq \emptyset$

in any event, **Theorem:** if we are stuck in choosing $a_{\alpha} \supset x_{\alpha}$, it is because $triv(\Phi)$ is ccc over fin and $\Vdash_{Q_{\alpha}} \Phi \upharpoonright \{a_{\beta} : \beta < \alpha\}^{\perp} \cap V = \mathcal{J}$ is σ -Borel. (hence trivial on each $b \in \mathcal{J}$)

[Velickovic] σ -Borel plus trivial on each member of a P-ideal \mathcal{J} implies there is a single *h* inducing Φ on each member of \mathcal{J} .

non-trivial embeddings of ℕ*

now we'd like to note the important theorem of [Farah] PFA implies that if $K \subset \mathbb{N}^*$ is homeomorphic to \mathbb{N}^* , then the interior of K is clopen (= A^*) and $K \setminus A^*$ is ccc over fin.

Let *f* be a homeomorphism from \mathbb{N}^* to *K*. Define the dual homomorphism Φ by $\Phi(X) \subset \mathbb{N}$ is such that $\Phi(X)^* = f^{-1}(X^* \cap K)$.

Since $X^* \cap \partial K \neq \emptyset$ means that $X \notin triv(\Phi)$, we have that ∂K is ccc over fin which shows that int(K) is clopen (i.e. regular closed sets do not have ccc over fin boundary)

some known consequences of trivial on ccc over fin

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \mathbb{N}^* does not map onto $(\omega \times \omega + 1)^*$ (let alone not being homeomorphic)

some known consequences of trivial on ccc over fin

 \mathbb{N}^* does not map onto $(\omega \times \omega + 1)^*$ (let alone not being homeomorphic)

the measure algebra does not embed in $\mathcal{P}(\mathbb{N})/fin$

separable?

some known consequences of trivial on ccc over fin

 \mathbb{N}^* does not map onto $(\omega \times \omega + 1)^*$ (let alone not being homeomorphic)

the measure algebra does not embed in $\mathcal{P}(\mathbb{N})/fin$ still open: if \mathbb{N}^* maps onto compact ED X, must X be

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

some known consequences of trivial on ccc over fin

 \mathbb{N}^* does not map onto $(\omega \times \omega + 1)^*$ (let alone not being homeomorphic)

the measure algebra does not embed in $\mathcal{P}(\mathbb{N})/fin$ still open: if \mathbb{N}^* maps onto compact ED *X*, must *X* be separable?

 \mathbb{R}^* does not map onto the separable continuum: the Stone-Cech compactification of the long repeating topologist's sine curve (the closure of the graph of $\sin(1/(x - \lfloor x \rfloor))$)

(日) (日) (日) (日) (日) (日) (日)

Let *f* be a 2-to-1 map from \mathbb{N}^* onto a space *K*.

Let *f* be a 2-to-1 map from \mathbb{N}^* onto a space *K*. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^*$ is locally 1-to-1 and $f[I^*]$ open in *K*.

Let *f* be a 2-to-1 map from \mathbb{N}^* onto a space *K*. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^*$ is locally 1-to-1 and $f[I^*]$ open in *K*.

By MA we are able to show that *K* is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^*$ is 1-to-1 into *U*.

Let *f* be a 2-to-1 map from \mathbb{N}^* onto a space *K*. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^*$ is locally 1-to-1 and $f[I^*]$ open in *K*.

By MA we are able to show that *K* is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^*$ is 1-to-1 into *U*.

Each G_{δ} contained in $f[a^*] \cap f[(\mathbb{N} \setminus a)^*]$ is contained in interior.

Let *f* be a 2-to-1 map from \mathbb{N}^* onto a space *K*. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^*$ is locally 1-to-1 and $f[I^*]$ open in *K*.

By MA we are able to show that *K* is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^*$ is 1-to-1 into *U*.

Each G_{δ} contained in $f[a^*] \cap f[(\mathbb{N} \setminus a)^*]$ is contained in interior. Proof:

Let *f* be a 2-to-1 map from \mathbb{N}^* onto a space *K*. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^*$ is locally 1-to-1 and $f[I^*]$ open in *K*.

By MA we are able to show that *K* is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^*$ is 1-to-1 into *U*.

Each G_{δ} contained in $f[a^*] \cap f[(\mathbb{N} \setminus a)^*]$ is contained in interior.

(ロ) (同) (三) (三) (三) (○) (○)

Proof: Let $\bigcap_n U_n$ be the G_{δ} . May assume $\overline{U_{n+1}} \subset U_n$.

Let *f* be a 2-to-1 map from \mathbb{N}^* onto a space *K*. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^*$ is locally 1-to-1 and $f[I^*]$ open in *K*.

By MA we are able to show that *K* is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^*$ is 1-to-1 into *U*.

Each G_{δ} contained in $f[a^*] \cap f[(\mathbb{N} \setminus a)^*]$ is contained in interior.

Proof: Let $\bigcap_n U_n$ be the G_{δ} . May assume $\overline{U_{n+1}} \subset U_n$. Choose $z_n \in U_n \setminus f[a^*]$ (wlog) for all *n*.

(ロ) (同) (三) (三) (三) (○) (○)

Let *f* be a 2-to-1 map from \mathbb{N}^* onto a space *K*. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^*$ is locally 1-to-1 and $f[I^*]$ open in *K*.

By MA we are able to show that *K* is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^*$ is 1-to-1 into *U*.

Each G_{δ} contained in $f[a^*] \cap f[(\mathbb{N} \setminus a)^*]$ is contained in interior.

Proof: Let $\bigcap_n U_n$ be the G_{δ} . May assume $\overline{U_{n+1}} \subset U_n$. Choose $z_n \in U_n \setminus f[a^*]$ (wlog) for all *n*. Thus $f^{-1}(\{z_n\}_n)$ is a discrete set and its closure maps 2-to-1 onto the closure of $\{z_n\}_n$.

PFA resolves the 2-to-1 mapping question

Let *f* be a 2-to-1 map from \mathbb{N}^* onto a space *K*. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^*$ is locally 1-to-1 and $f[I^*]$ open in *K*.

By MA we are able to show that *K* is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^*$ is 1-to-1 into *U*.

Each G_{δ} contained in $f[a^*] \cap f[(\mathbb{N} \setminus a)^*]$ is contained in interior.

Proof: Let $\bigcap_n U_n$ be the G_{δ} . May assume $\overline{U_{n+1}} \subset U_n$. Choose $z_n \in U_n \setminus f[a^*]$ (wlog) for all *n*. Thus $f^{-1}(\{z_n\}_n)$ is a discrete set and its closure maps 2-to-1 onto the closure of $\{z_n\}_n$. It follows that the limit points of $\{z_n\}$ while in $\bigcap_n U_n$ are not in $f[a^*]$.

II. PFA and automorphisms

clopen copies of \mathbb{N}^* in *K*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f[I^*] \subset U$. hence \mathcal{I} is non-empty.

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f[I^*] \subset U$. hence \mathcal{I} is non-empty.

We use the Shelah-Steprans Q and A method.

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f[I^*] \subset U$. hence \mathcal{I} is non-empty.

We use the Shelah-Steprans Q and A method.

Given any $U \subset K$, we can choose disjoint family $\{U_{\alpha} : \alpha \in \omega_1\}$ of open subsets of U.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f[I^*] \subset U$. hence \mathcal{I} is non-empty.

We use the Shelah-Steprans Q and A method.

Given any $U \subset K$, we can choose disjoint family $\{U_{\alpha} : \alpha \in \omega_1\}$ of open subsets of U. For each α choose $W_{\alpha} \subset W_{\alpha} \subset U_{\alpha}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f[I^*] \subset U$. hence \mathcal{I} is non-empty.

We use the Shelah-Steprans Q and A method.

Given any $U \subset K$, we can choose disjoint family $\{U_{\alpha} : \alpha \in \omega_1\}$ of open subsets of U. For each α choose $W_{\alpha} \subset W_{\alpha} \subset U_{\alpha}$.

Next find $a_{\alpha} \subset \mathbb{N}$ such that $f^{-1}(\overline{W_{\alpha}}) \subset a_{\alpha}^*$ and $a_{\alpha}^* \cap f^{-1}(K \setminus U_{\alpha})$ is empty.

A D F A 同 F A E F A E F A Q A

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f[I^*] \subset U$. hence \mathcal{I} is non-empty.

We use the Shelah-Steprans Q and A method.

Given any $U \subset K$, we can choose disjoint family $\{U_{\alpha} : \alpha \in \omega_1\}$ of open subsets of U. For each α choose $W_{\alpha} \subset W_{\alpha} \subset U_{\alpha}$.

Next find $a_{\alpha} \subset \mathbb{N}$ such that $f^{-1}(\overline{W_{\alpha}}) \subset a_{\alpha}^*$ and $a_{\alpha}^* \cap f^{-1}(K \setminus U_{\alpha})$ is empty. Thus $f[(\mathbb{N} \setminus a_{\alpha})^*]$ is disjoint from W_{α} .

A D F A 同 F A E F A E F A Q A

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f[I^*] \subset U$. hence \mathcal{I} is non-empty.

We use the Shelah-Steprans Q and A method.

Given any $U \subset K$, we can choose disjoint family $\{U_{\alpha} : \alpha \in \omega_1\}$ of open subsets of U. For each α choose $W_{\alpha} \subset W_{\alpha} \subset U_{\alpha}$.

Next find $a_{\alpha} \subset \mathbb{N}$ such that $f^{-1}(\overline{W_{\alpha}}) \subset a_{\alpha}^*$ and $a_{\alpha}^* \cap f^{-1}(K \setminus U_{\alpha})$ is empty. Thus $f[(\mathbb{N} \setminus a_{\alpha})^*]$ is disjoint from W_{α} .

A D F A 同 F A E F A E F A Q A

Fix any infinite $b_{\alpha} \subset a_{\alpha}$ such that $f[b_{\alpha}^*] \subset W_{\alpha}$ and $f \upharpoonright b_{\alpha}^*$ is 1-to-1.

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f[I^*] \subset U$. hence \mathcal{I} is non-empty.

We use the Shelah-Steprans Q and A method.

Given any $U \subset K$, we can choose disjoint family $\{U_{\alpha} : \alpha \in \omega_1\}$ of open subsets of U. For each α choose $W_{\alpha} \subset W_{\alpha} \subset U_{\alpha}$.

Next find $a_{\alpha} \subset \mathbb{N}$ such that $f^{-1}(\overline{W_{\alpha}}) \subset a_{\alpha}^*$ and $a_{\alpha}^* \cap f^{-1}(K \setminus U_{\alpha})$ is empty. Thus $f[(\mathbb{N} \setminus a_{\alpha})^*]$ is disjoint from W_{α} .

Fix any infinite $b_{\alpha} \subset a_{\alpha}$ such that $f[b_{\alpha}^*] \subset W_{\alpha}$ and $f \upharpoonright b_{\alpha}^*$ is 1-to-1. If $f[b_{\alpha}^*]$ has any interior, we have succeeded. So, we assume instead, that for all α , $f[b_{\alpha}^*]$ is nowhere dense.

II. PFA and automorphisms

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For each α then, there is a closed set $K_{\alpha} \subset c_{\alpha}^* = (a_{\alpha} \setminus b_{\alpha})^*$ such that $f[K_{\alpha}] = f[b_{\alpha}^*]$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For each α then, there is a closed set $K_{\alpha} \subset c_{\alpha}^* = (a_{\alpha} \setminus b_{\alpha})^*$ such that $f[K_{\alpha}] = f[b_{\alpha}^*]$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

i.e. there is a homomorphism H_{α} from $\mathcal{P}(c_{\alpha})$ onto $\mathcal{P}(b_{\alpha})$.

For each α then, there is a closed set $K_{\alpha} \subset c_{\alpha}^* = (a_{\alpha} \setminus b_{\alpha})^*$ such that $f[K_{\alpha}] = f[b_{\alpha}^*]$

i.e. there is a homomorphism H_{α} from $\mathcal{P}(c_{\alpha})$ onto $\mathcal{P}(b_{\alpha})$.

Following the Shelah-Steprans method, we can force with ${}^{<\omega_1}2$ and then construct a sequence $\{c_\alpha, d_\alpha : \alpha \in \omega_1\}$, so that the poset Q_{ω_1} is ccc and we obtain a gap from $\{H_\alpha(d_\alpha), H_\alpha(c_\alpha \setminus d_\alpha) : \alpha \in \omega_1\}.$

II. PFA and automorphisms

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

This gives us a set X (forced by Q_{ω_1}) satisfying that $X \cap c_{\alpha} =^* d_{\alpha}$ for all α . We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}(d_{\alpha})$.

This gives us a set X (forced by Q_{ω_1}) satisfying that $X \cap c_{\alpha} =^* d_{\alpha}$ for all α . We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}(d_{\alpha})$. By symmetry, we may assume that $\tilde{b}_{\alpha} = H_{\alpha}(d_{\alpha}) \setminus X$ is infinite.

(ロ) (同) (三) (三) (三) (○) (○)

This gives us a set X (forced by Q_{ω_1}) satisfying that $X \cap c_{\alpha} =^* d_{\alpha}$ for all α . We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}(d_{\alpha})$. By symmetry, we may assume that $\tilde{b}_{\alpha} = H_{\alpha}(d_{\alpha}) \setminus X$ is infinite. By the definition of H_{α} , it follows that $f[d_{\alpha}^*] \supset f[\tilde{b}_{\alpha}^*]$ and that X does separate the family of such d_{α} 's and the \tilde{b}_{α} 's. This gives us a set X (forced by Q_{ω_1}) satisfying that $X \cap c_{\alpha} =^* d_{\alpha}$ for all α . We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}(d_{\alpha})$. By symmetry, we may assume that $\tilde{b}_{\alpha} = H_{\alpha}(d_{\alpha}) \setminus X$ is infinite. By the definition of H_{α} , it follows that $f[d_{\alpha}^*] \supset f[\tilde{b}_{\alpha}^*]$ and that X does separate the family of such d_{α} 's and the \tilde{b}_{α} 's. This means that we were able to choose A as above, and that we may assume that $X \subset A$.

(日) (日) (日) (日) (日) (日) (日)

This gives us a set X (forced by Q_{ω_1}) satisfying that $X \cap c_{\alpha} =^* d_{\alpha}$ for all α . We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}(d_{\alpha})$. By symmetry, we may assume that $\tilde{b}_{\alpha} = H_{\alpha}(d_{\alpha}) \setminus X$ is infinite. By the definition of H_{α} , it follows that $f[d_{\alpha}^*] \supset f[\tilde{b}_{\alpha}^*]$ and that X does separate the family of such d_{α} 's and the \tilde{b}_{α} 's. This means that we were able to choose A as above, and that we may assume that $X \subset A$.

We have the gap $\{H_{\alpha}(d_{\alpha}), b_{\alpha} \setminus H_{\alpha}(d_{\alpha}) : \alpha \in \omega_1\}$, which implies there is a point *w* in $\bigcup_{\alpha} (H_{\alpha}(d_{\alpha}))^* \cap \bigcup_{\alpha} (b_{\alpha} \setminus H_{\alpha}(d_{\alpha}))^* \subset (\mathbb{N} \setminus A)^*$

This gives us a set X (forced by Q_{ω_1}) satisfying that $X \cap c_{\alpha} =^* d_{\alpha}$ for all α . We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}(d_{\alpha})$. By symmetry, we may assume that $\tilde{b}_{\alpha} = H_{\alpha}(d_{\alpha}) \setminus X$ is infinite. By the definition of H_{α} , it follows that $f[d_{\alpha}^*] \supset f[\tilde{b}_{\alpha}^*]$ and that X does separate the family of such d_{α} 's and the \tilde{b}_{α} 's. This means that we were able to choose A as above, and that we may assume that $X \subset A$.

We have the gap $\{H_{\alpha}(d_{\alpha}), b_{\alpha} \setminus H_{\alpha}(d_{\alpha}) : \alpha \in \omega_1\}$, which implies there is a point *w* in $\bigcup_{\alpha} (H_{\alpha}(d_{\alpha}))^* \cap \bigcup_{\alpha} (b_{\alpha} \setminus H_{\alpha}(d_{\alpha}))^* \subset (\mathbb{N} \setminus A)^*$

 $f[(A \cap X)^*] \supset f[\overline{\bigcup_{\alpha}(H_{\alpha}(d_{\alpha}))^*}] \text{ and} f[(A \setminus X)^*] \supset f[\overline{\bigcup_{\alpha}(b_{\alpha} \setminus H_{\alpha}(d_{\alpha}))^*}].$

This gives us a set X (forced by Q_{ω_1}) satisfying that $X \cap c_{\alpha} =^* d_{\alpha}$ for all α . We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}(d_{\alpha})$. By symmetry, we may assume that $\tilde{b}_{\alpha} = H_{\alpha}(d_{\alpha}) \setminus X$ is infinite. By the definition of H_{α} , it follows that $f[d_{\alpha}^*] \supset f[\tilde{b}_{\alpha}^*]$ and that X does separate the family of such d_{α} 's and the \tilde{b}_{α} 's. This means that we were able to choose A as above, and that we may assume that $X \subset A$.

We have the gap $\{H_{\alpha}(d_{\alpha}), b_{\alpha} \setminus H_{\alpha}(d_{\alpha}) : \alpha \in \omega_1\}$, which implies there is a point *w* in $\bigcup_{\alpha} (H_{\alpha}(d_{\alpha}))^* \cap \bigcup_{\alpha} (b_{\alpha} \setminus H_{\alpha}(d_{\alpha}))^* \subset (\mathbb{N} \setminus A)^*$

$$f[(A \cap X)^*] \supset f[\overline{\bigcup_{\alpha}(H_{\alpha}(d_{\alpha}))^*}] \text{ and} \ f[(A \setminus X)^*] \supset f[\overline{\bigcup_{\alpha}(b_{\alpha} \setminus H_{\alpha}(d_{\alpha}))^*}].$$

That means f(w) has 3 points in its preimage!

non-empty G_{δ} 's have non-empty interior

Next Lemma: *K* has the property that non-empty G_{δ} 's have non-empty interior. (uses Farah's theorem)

Let $\{U_n\}_n$ be the sequence of open sets such that $\overline{U_{n+1}} \subset U_n$. For each *n*, we have some $(b_n \cup c_n) \in \mathcal{I}$ such that $f[b_n^*] = f[c_n^*] \subset U_n \setminus \overline{U_{n+1}}$ and is a clopen subset of *K*.

For each *n*, $f^{-1}(U_n)$ is an open set in \mathbb{N}^* which contains the closure of $\bigcup_{k\geq n}(b_k\cup c_k)^*$. Thus we can arrange that $\left(\bigcup_{k\geq n}(b_k\cup c_k)\right)^*$ is contained in $f^{-1}(U_n)$ for each *n*. If $U = K \setminus f[(\mathbb{N} \setminus \bigcup_n b_n)^*] \subset \bigcap_n U_n$ is not empty then we are done.

o/w, set $b = \bigcup_n b_n$ and notice that $f \upharpoonright b^*$ must be 1-to-1 (since $f[(\mathbb{N} \setminus b)^*] \supset f[b^*]$).

Then we use the CH * Cohen * OCA trick to finish as follows.

Then we use the CH * Cohen * OCA trick to finish as follows.

Let $x \in \mathbb{N}^*$ be any point witnessing that *f* is not locally 1-to-1.

Then we use the CH * Cohen * OCA trick to finish as follows.

Let $x \in \mathbb{N}^*$ be any point witnessing that *f* is not locally 1-to-1.

To save time, just assert that using non-empty G_{δ} 's have non-empty interior in K, we can construct a sequence $\{a_{\alpha} : \alpha \in \omega_1\} \subset \mathcal{I}$ converging to x

Probably skip the construction of $\{a_{\alpha} : \alpha \in \omega_1\}$

Fix any $E \in x$ such that $f(x) \in f[(\mathbb{N} \setminus E)^*]$. If there were any G_{δ} of *K* containing f(x) and contained in $f[E^*] \cap f[(\mathbb{N} \setminus E)^*]$, then *f* would be locally 1-to-1 at *x*.

Suppose we are given any countable $\mathcal{A} \subset x$, we may by enlarging \mathcal{A} assume that for each $a \in \mathcal{A}$, there is an $\tilde{a} \in \mathcal{A}$ such that $f[\tilde{a}^*] \cap f[(E \setminus a)^*]$ is empty.

 $K \setminus \bigcup_{a \in \mathcal{A}} f[(E \setminus a)^*]$ is a G_{δ} containing f(x) and so can not be contained in $f[(\mathbb{N} \setminus E)^*]$.

And since it has dense interior, there is a $b \in \mathcal{I}$ such that $f[b^*] \subset U$. It is easily checked that $b \prec \mathcal{A}$.

This completes the proof that given countable A from x, there is a $b \prec A$ such that $b \in I$.

II. PFA and automorphisms

now we finish the proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Give the sequence $\{a_{\alpha} : \alpha \in \omega_1\} \subset \mathcal{I}$ converging to x,

Give the sequence $\{a_{\alpha} : \alpha \in \omega_1\} \subset \mathcal{I}$ converging to x, there are mappings $h_{\alpha} : a_{\alpha} \mapsto a_{\alpha}$ such that $h_{\alpha}^2 = id$ and $h_{\alpha}(n) \neq n$. (i.e. h_{α} induces $f^{-1} \circ f$), then for all uncountable $I \subset \omega_1, \bigcup_{\alpha \in I} h_{\alpha}$ is not 1-to-1 on any member of x.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Give the sequence $\{a_{\alpha} : \alpha \in \omega_1\} \subset \mathcal{I}$ converging to x, there are mappings $h_{\alpha} : a_{\alpha} \mapsto a_{\alpha}$ such that $h_{\alpha}^2 = id$ and $h_{\alpha}(n) \neq n$. (i.e. h_{α} induces $f^{-1} \circ f$), then for all uncountable $I \subset \omega_1, \bigcup_{\alpha \in I} h_{\alpha}$ is not 1-to-1 on any member of x.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Force with $3^{<\mathbb{N}}$ thus adding a partition C_0, C_1, C_2

Give the sequence $\{a_{\alpha} : \alpha \in \omega_1\} \subset \mathcal{I}$ converging to x, there are mappings $h_{\alpha} : a_{\alpha} \mapsto a_{\alpha}$ such that $h_{\alpha}^2 = id$ and $h_{\alpha}(n) \neq n$. (i.e. h_{α} induces $f^{-1} \circ f$), then for all uncountable $I \subset \omega_1, \bigcup_{\alpha \in I} h_{\alpha}$ is not 1-to-1 on any member of x.

Force with $3^{<\mathbb{N}}$ thus adding a partition C_0, C_1, C_2 $(\alpha, \beta) \in R$ (per OCA) if there are $i \in C_0 \cap a_\alpha, j \in C_1 \cap a_\beta$ so that $h_\alpha(i) = h_\beta(j) \in C_2$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Give the sequence $\{a_{\alpha} : \alpha \in \omega_1\} \subset \mathcal{I}$ converging to x, there are mappings $h_{\alpha} : a_{\alpha} \mapsto a_{\alpha}$ such that $h_{\alpha}^2 = id$ and $h_{\alpha}(n) \neq n$. (i.e. h_{α} induces $f^{-1} \circ f$), then for all uncountable $I \subset \omega_1, \bigcup_{\alpha \in I} h_{\alpha}$ is not 1-to-1 on any member of x.

Force with $3^{<\mathbb{N}}$ thus adding a partition C_0, C_1, C_2 $(\alpha, \beta) \in R$ (per OCA) if there are $i \in C_0 \cap a_\alpha, j \in C_1 \cap a_\beta$ so that $h_\alpha(i) = h_\beta(j) \in C_2$.

(日) (日) (日) (日) (日) (日) (日)

{ $C_2 \cap h_\alpha(a_\alpha \cap C_0)$, $C_2 \cap h_\alpha(a_\alpha \cap C_1) : \alpha \in \omega_1$ } forms a gap, and if $w \in C_2^*$ is in common closure, there are $x \in C_0^*$ and $y \in C_1^*$ such that f(x) = f(w) = f(y)