Moron Maps and subspaces of N* under PFA

Alan Dow
Department of Mathematics
University of North Carolina Charlotte
winter school 2010

using the tricks to study autohomeomorphisms

Fix a function $\Phi: \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ which is a lifting of a mod fin homomorphism: (dually $\mathbb{N}^{*} \leftrightarrow \mathbb{N}^{*}, \Phi(X)={ }^{*} f^{-1}\left(X^{*}\right)$)
$\Phi(X) \cup \Phi(Y)={ }^{*} \Phi(X \cup Y) ; \quad \Phi(X) \cap \Phi(Y)={ }^{*} \Phi(X \cap Y) ; \quad \Phi(\emptyset)=\emptyset$

using the tricks to study autohomeomorphisms

Fix a function $\Phi: \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ which is a lifting of a mod fin homomorphism: (dually $\mathbb{N}^{*} \leftrightarrow \mathbb{N}^{*}, \Phi(X)={ }^{*} f^{-1}\left(X^{*}\right)$)
$\Phi(X) \cup \Phi(Y)={ }^{*} \Phi(X \cup Y) ; \quad \Phi(X) \cap \Phi(Y)={ }^{*} \Phi(X \cap Y) ; \quad \Phi(\emptyset)=\emptyset$
as in the OCA discussion, $\mathcal{P}(\mathbb{N})$ is given the topology with $[s ; n]=\{X \subset \mathbb{N}: X \cap n=s\}$ being the basic clopen sets

using the tricks to study autohomeomorphisms

Fix a function $\Phi: \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ which is a lifting of a $\bmod f i n$ homomorphism: (dually $\mathbb{N}^{*} \& \mathbb{N}^{*}, \Phi(X)={ }^{*} f^{-1}\left(X^{*}\right)$)
$\Phi(X) \cup \Phi(Y)={ }^{*} \Phi(X \cup Y) ; \quad \Phi(X) \cap \Phi(Y)={ }^{*} \Phi(X \cap Y) ; \quad \Phi(\emptyset)=\emptyset$
as in the OCA discussion, $\mathcal{P}(\mathbb{N})$ is given the topology with $[s ; n]=\{X \subset \mathbb{N}: X \cap n=s\}$ being the basic clopen sets
say that $I \in \operatorname{triv}(\Phi)$ if there is an $h_{I} \in \mathbb{N}^{I}$ such that $\Phi(a)={ }^{*} h_{l}[a]$ for all $a \subset I$

using the tricks to study autohomeomorphisms

Fix a function $\Phi: \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ which is a lifting of a $\bmod f i n$ homomorphism: (dually $\mathbb{N}^{*} \& \mathbb{N}^{*}, \Phi(X)={ }^{*} f^{-1}\left(X^{*}\right)$)
$\Phi(X) \cup \Phi(Y)={ }^{*} \Phi(X \cup Y) ; \quad \Phi(X) \cap \Phi(Y)={ }^{*} \Phi(X \cap Y) ; \quad \Phi(\emptyset)=\emptyset$
as in the OCA discussion, $\mathcal{P}(\mathbb{N})$ is given the topology with $[s ; n]=\{X \subset \mathbb{N}: X \cap n=s\}$ being the basic clopen sets
say that $I \in \operatorname{triv}(\Phi)$ if there is an $h_{I} \in \mathbb{N}^{l}$ such that $\Phi(a)={ }^{*} h_{l}[a]$ for all $a \subset I$
note that h_{l} is continuous as a map on $\mathcal{P}(I)$

using the tricks to study autohomeomorphisms

Fix a function $\Phi: \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ which is a lifting of a mod fin homomorphism: (dually $\mathbb{N}^{*} \nleftarrow \mathbb{N}^{*}, \Phi(X)==^{*} f^{-1}\left(X^{*}\right)$)
$\Phi(X) \cup \Phi(Y)={ }^{*} \Phi(X \cup Y) ; \quad \Phi(X) \cap \Phi(Y)={ }^{*} \Phi(X \cap Y) ; \quad \Phi(\emptyset)=\emptyset$
as in the OCA discussion, $\mathcal{P}(\mathbb{N})$ is given the topology with $[s ; n]=\{X \subset \mathbb{N}: X \cap n=s\}$ being the basic clopen sets
say that $I \in \operatorname{triv}(\Phi)$ if there is an $h_{I} \in \mathbb{N}^{l}$ such that $\Phi(a)={ }^{*} h_{l}[a]$ for all $a \subset I$
note that h_{l} is continuous as a map on $\mathcal{P}(I)$
if there is a continuous lifting then Φ is trivial.

adding a Cohen real to a Borel lifting F

adding a Cohen real to a Borel lifting F

Suppose F is a Borel lifting of automorphism Φ (continuous on dense $G_{\delta} \mathcal{X}$)

adding a Cohen real to a Borel lifting F

Suppose F is a Borel lifting of automorphism Φ (continuous on dense $G_{\delta} \mathcal{X}$)

Let g_{1}, g_{2} be generics for the poset $\{[s ; n]: s \subset n \in \mathbb{N}\}$

adding a Cohen real to a Borel lifting F

Suppose F is a Borel lifting of automorphism Φ (continuous on dense $G_{\delta} \mathcal{X}$)

Let g_{1}, g_{2} be generics for the poset $\{[s ; n]: s \subset n \in \mathbb{N}\}$
Then $F\left(g_{1}\right)$ and $F\left(g_{2}\right)$ are defined, but $\Phi\left(g_{i}\right)$ are not;
$\exists\left[s_{1} ; n\right],\left[s_{2} ; n\right] \Vdash\left(F\left(g_{1}\right) \star F\left(g_{2}\right)\right) \Delta F\left(g_{1} \star g_{2}\right) \subset n$
where \star is one of $\{\cap, \cup, \Delta,-\}$

adding a Cohen real to a Borel lifting F

Suppose F is a Borel lifting of automorphism Φ (continuous on dense $G_{\delta} \mathcal{X}$)

Let g_{1}, g_{2} be generics for the poset $\{[s ; n]: s \subset n \in \mathbb{N}\}$
Then $F\left(g_{1}\right)$ and $F\left(g_{2}\right)$ are defined, but $\Phi\left(g_{i}\right)$ are not;
$\exists\left[s_{1} ; n\right],\left[s_{2} ; n\right] \Vdash\left(F\left(g_{1}\right) \star F\left(g_{2}\right)\right) \Delta F\left(g_{1} \star g_{2}\right) \subset n$
where \star is one of $\{\cap, \cup, \Delta,-\}$
also $(\exists \tilde{n}>n) \forall s, t \subset n$ (and extend s_{1}, s_{2} with $\left.s_{1} \Delta s_{2} \subset n\right)$
$\left[s_{1} ; n\right],\left[s_{2} ; n\right] \Vdash F\left(s \cup g_{1}-n\right)-\tilde{n}=F\left(t \cup g_{1}-n\right)-\tilde{n}$

adding a Cohen real to a Borel lifting F

Suppose F is a Borel lifting of automorphism Φ (continuous on dense $G_{\delta} \mathcal{X}$)

Let g_{1}, g_{2} be generics for the poset $\{[s ; n]: s \subset n \in \mathbb{N}\}$
Then $F\left(g_{1}\right)$ and $F\left(g_{2}\right)$ are defined, but $\Phi\left(g_{i}\right)$ are not;
$\exists\left[s_{1} ; n\right],\left[s_{2} ; n\right] \Vdash\left(F\left(g_{1}\right) \star F\left(g_{2}\right)\right) \Delta F\left(g_{1} \star g_{2}\right) \subset n$
where \star is one of $\{\cap, \cup, \Delta,-\}$
also $(\exists \tilde{n}>n) \forall s, t \subset n$ (and extend s_{1}, s_{2} with $\left.s_{1} \Delta s_{2} \subset n\right)$
$\left[s_{1} ; n\right],\left[s_{2} ; n\right] \Vdash F\left(s \cup g_{1}-n\right)-\tilde{n}=F\left(t \cup g_{1}-n\right)-\tilde{n}$
otherwise meeting countably many dense sets, including some to get inside dense G_{δ} set \mathcal{X}, we find $v_{1}, v_{2} \subset \mathbb{N}$ yielding, e.g. $\Phi\left(v_{1}\right) \star \Phi\left(v_{2}\right)={ }^{*} F\left(v_{1}\right) \star F\left(v_{2}\right) \not \neq^{*} F\left(v_{1} \star v_{2}\right)=* \Phi\left(v_{1} \star v_{2}\right)$

completely additive implies trivial

Now in the extension: by continuity for $a \in \mathcal{X}$ $\Phi(a)={ }^{*} F_{1}(a)=\lim _{m} F_{1}\left((a \cap m) \cup g_{i}-m\right)$ and $F_{1}(a)=\lim _{m} F_{1}\left((a \cap m) \cup\left(g_{1} \star g_{2}\right)-m\right)$

completely additive implies trivial

Now in the extension: by continuity for $a \in \mathcal{X}$
$\Phi(a)={ }^{*} F_{1}(a)=\lim _{m} F_{1}\left((a \cap m) \cup g_{i}-m\right)$ and
$F_{1}(a)=\lim _{m} F_{1}\left((a \cap m) \cup\left(g_{1} \star g_{2}\right)-m\right)$
and for $a, b \in \mathcal{X}$
$\Phi(a \star b)={ }^{*} \Phi(a) \star \Phi(b)={ }^{*} F_{1}(a) \star F_{1}(b)=F_{1}(a \star b)$

completely additive implies trivial

Now in the extension: by continuity for $a \in \mathcal{X}$
$\Phi(a)={ }^{*} F_{1}(a)=\lim _{m} F_{1}\left((a \cap m) \cup g_{i}-m\right)$ and
$F_{1}(a)=\lim _{m} F_{1}\left((a \cap m) \cup\left(g_{1} \star g_{2}\right)-m\right)$
and for $a, b \in \mathcal{X}$
$\Phi(a \star b)={ }^{*} \Phi(a) \star \Phi(b)={ }^{*} F_{1}(a) \star F_{1}(b)=F_{1}(a \star b)$
little bit easy exercise, $(\forall x \subset \mathbb{N})$, there are $a, b \in \mathcal{X}$ such that $x=a \Delta b$,
hence F_{1} has a unique continuous extension, \tilde{F}, to $\mathcal{P}(\mathbb{N})$, and this is a pure lifting

completely additive implies trivial

Now in the extension: by continuity for $a \in \mathcal{X}$
$\Phi(a)={ }^{*} F_{1}(a)=\lim _{m} F_{1}\left((a \cap m) \cup g_{i}-m\right)$ and
$F_{1}(a)=\lim _{m} F_{1}\left((a \cap m) \cup\left(g_{1} \star g_{2}\right)-m\right)$
and for $a, b \in \mathcal{X}$
$\Phi(a \star b)={ }^{*} \Phi(a) \star \Phi(b)={ }^{*} F_{1}(a) \star F_{1}(b)=F_{1}(a \star b)$
little bit easy exercise, $(\forall x \subset \mathbb{N})$, there are $a, b \in \mathcal{X}$ such that $x=a \Delta b$,
hence F_{1} has a unique continuous extension, \tilde{F}, to $\mathcal{P}(\mathbb{N})$, and this is a pure lifting

completely additive implies trivial

Now in the extension: by continuity for $a \in \mathcal{X}$
$\Phi(a)={ }^{*} F_{1}(a)=\lim _{m} F_{1}\left((a \cap m) \cup g_{i}-m\right)$ and
$F_{1}(a)=\lim _{m} F_{1}\left((a \cap m) \cup\left(g_{1} \star g_{2}\right)-m\right)$
and for $a, b \in \mathcal{X}$
$\Phi(a \star b)={ }^{*} \Phi(a) \star \Phi(b)={ }^{*} F_{1}(a) \star F_{1}(b)=F_{1}(a \star b)$
little bit easy exercise, $(\forall x \subset \mathbb{N})$, there are $a, b \in \mathcal{X}$ such that $x=a \Delta b$,
hence F_{1} has a unique continuous extension, \tilde{F}, to $\mathcal{P}(\mathbb{N})$, and this is a pure lifting
now define $h(i) \in \tilde{F}(\{i\})$ for $a \in \mathcal{X}$ and check that h induces Φ

Cohen forcing and σ-Borel automorphisms

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.

Cohen forcing and σ-Borel automorphisms

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.
(skipping) proof: Assume that $F: \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ is a continuous function (after forcing with $2^{<\omega}$) and that $F(X)={ }^{*} \Phi(X)$ for all $X \in \mathcal{P}(\mathbb{N})$.
Put $X \in \mathbb{X}_{p, n}$ providing $p \Vdash F(X) \backslash n=\Phi(X) \backslash n$.
Find p, n and $s \subset n$ such that $\mathbb{X}_{p, n}$ is dense in $[s ; n]$
Let $Y \in[s ; n] \cap V$ and let $\left\{X_{k}: k \in \omega\right\} \subset \mathbb{X}_{p, n} \cap[s ; n]$ converge to Y. Then $p \Vdash F(Y)=\lim _{k} F\left(X_{k}\right)=* \Phi(Y)$, hence $F(Y) \in V$.

Thus, $\Phi_{s}(X)=\Phi(s \cup(X \backslash n))$ is a continuous lifting for the same homomorphism.

Cohen forcing and σ-Borel automorphisms

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.

Cohen forcing and σ-Borel automorphisms

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.
more Borel map and Cohen connection:

Cohen forcing and σ-Borel automorphisms

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.
more Borel map and Cohen connection:
If \dot{Y} is a Cohen (i.e. $P=\{[s ; n]: s \subset n \in \mathbb{N}\}$) name of $\subset \mathbb{N}$, then there is a Borel map (continuous on a dense G_{δ}) $F_{\dot{Y}}$ such that, in the extension, $F_{\dot{Y}}(g)=\operatorname{val}_{g}(\dot{Y})$

Cohen forcing and σ-Borel automorphisms

Theorem: let Φ be a lifting of a mod fin homomorphism which has no Borel lifting, then adding a Cohen real will not add a continuous lifting for $\Phi \upharpoonright V \cap \mathcal{P}(\mathbb{N})$.
more Borel map and Cohen connection:
If \dot{Y} is a Cohen (i.e. $P=\{[s ; n]: s \subset n \in \mathbb{N}\}$) name of $\subset \mathbb{N}$, then there is a Borel map (continuous on a dense G_{δ}) $F_{\dot{Y}}$ such that, in the extension, $F_{\dot{Y}}(g)=v a l_{g}(\dot{Y})$

AND, Lemma there are $x \subset a \subset \mathbb{N}, \mathbb{N} \backslash a \notin \operatorname{triv}(\Phi)$ such that $\Vdash F_{\dot{Y}}(x \cup(g \backslash a)) \cap \Phi(a) \not \neq^{*} \Phi(x)$
i.e. $\Vdash_{P_{x, a}} \dot{Y} \cap \Phi(a) \neq \neq^{*} \Phi(x)$

Velickovic also proved σ-Borel implies Borel

there is quite a tricky step to this theorem which seems to simplify if we again throw Cohen forcing at it.

Velickovic also proved σ-Borel implies Borel

there is quite a tricky step to this theorem which seems to simplify if we again throw Cohen forcing at it.

Velickovic also proved σ-Borel implies Borel

there is quite a tricky step to this theorem which seems to simplify if we again throw Cohen forcing at it.

Assume that $\left\{F_{n}: n \in \omega\right\}$ is a family of Borel functions on $\mathcal{P}(\mathbb{N})$ such that for all $X \subset \mathbb{N}$, there is an n such that $\Phi(X)=F_{n}(X)$.

Velickovic also proved σ-Borel implies Borel

there is quite a tricky step to this theorem which seems to simplify if we again throw Cohen forcing at it.

Assume that $\left\{F_{n}: n \in \omega\right\}$ is a family of Borel functions on $\mathcal{P}(\mathbb{N})$ such that for all $X \subset \mathbb{N}$, there is an n such that $\Phi(X)=F_{n}(X)$.

Apply above Lemma to obtain $x_{0} \subset a_{0} \subset \mathbb{N}$ with $\mathbb{N} \backslash a_{0} \notin \operatorname{triv}(\Phi)$, and $\Vdash F_{0}\left(x_{0} \cup\left(g \backslash a_{0}\right)\right) \cap \Phi\left(a_{0}\right) \not \neq^{*} \Phi\left(x_{0}\right)$

Velickovic also proved σ-Borel implies Borel

there is quite a tricky step to this theorem which seems to simplify if we again throw Cohen forcing at it.

Assume that $\left\{F_{n}: n \in \omega\right\}$ is a family of Borel functions on $\mathcal{P}(\mathbb{N})$ such that for all $X \subset \mathbb{N}$, there is an n such that $\Phi(X)=F_{n}(X)$.

Apply above Lemma to obtain $x_{0} \subset a_{0} \subset \mathbb{N}$ with $\mathbb{N} \backslash a_{0} \notin \operatorname{triv}(\Phi)$, and $\Vdash F_{0}\left(x_{0} \cup\left(g \backslash a_{0}\right)\right) \cap \Phi\left(a_{0}\right) \not \neq^{*} \Phi\left(x_{0}\right)$
this hands us countably many dense sets that we must protect

σ-Borel, Borel, continuous are all the same

σ-Borel, Borel, continuous are all the same

Claim: (there is) x_{0} such that for comeager many $v \subset b_{0}$, $F_{0}\left(x_{0} \cup v\right) \cap \Phi\left(a_{0}\right) \not \neq^{*} \Phi\left(x_{0}\right)$.

σ-Borel, Borel, continuous are all the same

Claim: (there is) x_{0} such that for comeager many $v \subset b_{0}$, $F_{0}\left(x_{0} \cup v\right) \cap \Phi\left(a_{0}\right) \not \neq^{*} \Phi\left(x_{0}\right)$.

σ-Borel, Borel, continuous are all the same

Claim: (there is) x_{0} such that for comeager many $v \subset b_{0}$, $F_{0}\left(x_{0} \cup v\right) \cap \Phi\left(a_{0}\right) \not \neq^{*} \Phi\left(x_{0}\right)$.
 Cohen added a continuous lifting for $\Phi \upharpoonright \mathcal{P}\left(a_{0}\right)$

σ-Borel, Borel, continuous are all the same

Claim: (there is) x_{0} such that for comeager many $v \subset b_{0}$, $F_{0}\left(x_{0} \cup v\right) \cap \Phi\left(a_{0}\right) \not \neq^{*} \Phi\left(x_{0}\right)$.

$$
\mathcal{P}\left(a_{0}\right)_{x_{0}}
$$ Cohen added a continuous lifting for $\Phi \upharpoonright \mathcal{P}\left(a_{0}\right)$

repeat this, obtaining $x_{k} \subset a_{k} \subset b_{k-1}$ so that $\Phi\left(x_{k}\right) \not \neq^{*}$ $F_{k}\left(x_{0} \cup \cdots x_{k} \cup v\right) \cap \Phi\left(a_{k}\right)$ for comeager many $v \subset b_{k}$ $=b_{k-1} \backslash a_{k}$.

σ-Borel, Borel, continuous are all the same

Claim: (there is) x_{0} such that for comeager many $v \subset b_{0}$, $F_{0}\left(x_{0} \cup v\right) \cap \Phi\left(a_{0}\right) \not \neq^{*} \Phi\left(x_{0}\right)$.

Cohen added a continuous lifting for $\Phi \upharpoonright \mathcal{P}\left(a_{0}\right)$
repeat this, obtaining $x_{k} \subset a_{k} \subset b_{k-1}$ so that $\Phi\left(x_{k}\right) \not \neq^{*}$ $F_{k}\left(x_{0} \cup \cdots x_{k} \cup v\right) \cap \Phi\left(a_{k}\right)$ for comeager many $v \subset b_{k}$ $=b_{k-1} \backslash a_{k}$. Also carefully ensure that $v=\bigcup_{j>k} x_{j}$ lands you in the appropriate comeager sets.

σ-Borel, Borel, continuous are all the same

Claim: (there is) x_{0} such that for comeager many $v \subset b_{0}$, $F_{0}\left(x_{0} \cup v\right) \cap \Phi\left(a_{0}\right) \not \neq^{*} \Phi\left(x_{0}\right)$.

Cohen added a continuous lifting for $\Phi \upharpoonright \mathcal{P}\left(a_{0}\right)$
repeat this, obtaining $x_{k} \subset a_{k} \subset b_{k-1}$ so that $\Phi\left(x_{k}\right) \not \neq^{*}$ $F_{k}\left(x_{0} \cup \cdots x_{k} \cup v\right) \cap \Phi\left(a_{k}\right)$ for comeager many $v \subset b_{k}$ $=b_{k-1} \backslash a_{k}$. Also carefully ensure that $v=\bigcup_{j>k} x_{j}$ lands you in the appropriate comeager sets. Then $\Phi(v) \not \neq^{*} F_{k}(v)$ for all k.

Shelah-Steprans Q and A; Step 1

More Cohen forcing connections.

Shelah-Steprans Q and A; Step 1

More Cohen forcing connections.
Lemma 1 again: Let \dot{Y} be a $P=[\mathbb{N}]^{<\omega}$-name of a subset of \mathbb{N} and Φ be a homomorphism. Let $Y \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $\operatorname{triv}(\Phi)$.

Shelah-Steprans Q and A; Step 1

More Cohen forcing connections.
Lemma 1 again: Let \dot{Y} be a $P=[\mathbb{N}]^{<\omega}$-name of a subset of \mathbb{N} and Φ be a homomorphism. Let $Y \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $\operatorname{triv}(\Phi)$.

For $x \subset a \subset b, P_{x, a}=\{p \in P: p \cap a=x \cap \max (p)\}$.

Shelah-Steprans Q and A; Step 1

More Cohen forcing connections.
Lemma 1 again: Let \dot{Y} be a $P=[\mathbb{N}]^{<\omega}$-name of a subset of \mathbb{N} and Φ be a homomorphism. Let $\dot{Y} \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $\operatorname{triv}(\Phi)$.

For $x \subset a \subset b, P_{x, a}=\{p \in P: p \cap a=x \cap \max (p)\}$. We assume b is one of the "many" sets b so that for all $x \subset a \subset b$, $D \cap P_{x, a}$ is dense in $P_{x, a}$ for all $D \in \mathfrak{D} \cap M$.

Shelah-Steprans Q and A; Step 1

More Cohen forcing connections.
Lemma 1 again: Let \dot{Y} be a $P=[\mathbb{N}]^{<\omega}$-name of a subset of \mathbb{N} and Φ be a homomorphism. Let $\dot{Y} \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $\operatorname{triv}(\Phi)$.

For $x \subset a \subset b, P_{x, a}=\{p \in P: p \cap a=x \cap \max (p)\}$. We assume b is one of the "many" sets b so that for all $x \subset a \subset b$, $D \cap P_{x, a}$ is dense in $P_{x, a}$ for all $D \in \mathfrak{D} \cap M$.

If g is P-generic, then $g_{x, a}=x \cup(g \backslash a)$ is generic for $P_{x, a}$.

Shelah-Steprans Q and A; Step 1

More Cohen forcing connections.
Lemma 1 again: Let \dot{Y} be a $P=[\mathbb{N}]^{<\omega}$-name of a subset of \mathbb{N} and Φ be a homomorphism. Let $\dot{Y} \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $\operatorname{triv}(\Phi)$.

For $x \subset a \subset b, P_{x, a}=\{p \in P: p \cap a=x \cap \max (p)\}$. We assume b is one of the "many" sets b so that for all $x \subset a \subset b$, $D \cap P_{x, a}$ is dense in $P_{x, a}$ for all $D \in \mathfrak{D} \cap M$.

If g is P-generic, then $g_{x, a}=x \cup(g \backslash a)$ is generic for $P_{x, a}$.
In $V[g]$, we know that $F_{\dot{Y}}$ is Borel on $\mathcal{P}(a)$. and that there are $x \subset a \subset b$ with $b \backslash a \notin \operatorname{triv}(\Phi)$

Shelah-Steprans Q and A; Step 1

More Cohen forcing connections.
Lemma 1 again: Let \dot{Y} be a $P=[\mathbb{N}]^{<\omega}$-name of a subset of \mathbb{N} and Φ be a homomorphism. Let $\dot{Y} \in M \prec H(\theta)$ be countable and let \mathfrak{D} be the set of dense subsets of P. Let b not in $\operatorname{triv}(\Phi)$.

For $x \subset a \subset b, P_{x, a}=\{p \in P: p \cap a=x \cap \max (p)\}$. We assume b is one of the "many" sets b so that for all $x \subset a \subset b$, $D \cap P_{x, a}$ is dense in $P_{x, a}$ for all $D \in \mathfrak{D} \cap M$.

If g is P-generic, then $g_{x, a}=x \cup(g \backslash a)$ is generic for $P_{x, a}$.
In $V[g]$, we know that $F_{\dot{Y}}$ is Borel on $\mathcal{P}(a)$. and that there are $x \subset a \subset b$ with $b \backslash a \notin \operatorname{triv}(\Phi)$
such that $1 \Vdash{ }_{P_{x, a}} \Phi(x) \not \neq^{*} \dot{Y}_{g_{x, a}} \cap \Phi(a)$.

Shelah-Steprans Q and A: Step $2-\omega_{1}$

Shelah-Steprans Q and A : Step $2-\omega_{1}$

recursively construct $\mathcal{A}=\left\{a_{\xi} \supset x_{\xi}: \xi \in \omega_{1}\right\}$ as above, so that $\mathcal{A}=\left\{a_{\xi}: \xi \in \omega_{1}\right\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi}={ }^{*} x_{\xi}$ for $\xi<\alpha$, and $\mathbb{N} \backslash a_{\alpha} \notin \operatorname{triv}(\Phi)$

Shelah-Steprans Q and A : Step $2-\omega_{1}$

recursively construct $\mathcal{A}=\left\{a_{\xi} \supset x_{\xi}: \xi \in \omega_{1}\right\}$ as above, so that $\mathcal{A}=\left\{a_{\xi}: \xi \in \omega_{1}\right\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi}={ }^{*} x_{\xi}$ for $\xi<\alpha$, and $\mathbb{N} \backslash a_{\alpha} \notin \operatorname{triv}(\Phi)$
Define $Q_{\alpha} \subset[\mathbb{N}]^{<\omega} \times[\alpha]^{<\omega}$ by

$$
(q, J) \in Q_{\alpha} \text { implies }\left(x_{\xi} \cap a_{\eta}\right) \Delta x_{\eta} \subset \max q \text { for } \xi<\eta \in J
$$

Shelah-Steprans Q and A: Step $2-\omega_{1}$

recursively construct $\mathcal{A}=\left\{a_{\xi} \supset x_{\xi}: \xi \in \omega_{1}\right\}$ as above, so that $\mathcal{A}=\left\{a_{\xi}: \xi \in \omega_{1}\right\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi}={ }^{*} x_{\xi}$ for $\xi<\alpha$, and $\mathbb{N} \backslash a_{\alpha} \notin \operatorname{triv}(\Phi)$
Define $Q_{\alpha} \subset[\mathbb{N}]^{<\omega} \times[\alpha]^{<\omega}$ by

$$
(q, J) \in Q_{\alpha} \text { implies }\left(x_{\xi} \cap a_{\eta}\right) \Delta x_{\eta} \subset \max q \text { for } \xi<\eta \in J
$$

and ordered (so as to mimic $P_{x_{\xi}, a_{\xi}}$ for all $\xi<\alpha$)

Shelah-Steprans Q and A: Step $2-\omega_{1}$

recursively construct $\mathcal{A}=\left\{a_{\xi} \supset x_{\xi}: \xi \in \omega_{1}\right\}$ as above, so that $\mathcal{A}=\left\{a_{\xi}: \xi \in \omega_{1}\right\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi}={ }^{*} x_{\xi}$ for $\xi<\alpha$, and $\mathbb{N} \backslash a_{\alpha} \notin \operatorname{triv}(\Phi)$
Define $Q_{\alpha} \subset[\mathbb{N}]^{<\omega} \times[\alpha]^{<\omega}$ by

$$
(q, J) \in Q_{\alpha} \text { implies }\left(x_{\xi} \cap a_{\eta}\right) \Delta x_{\eta} \subset \max q \text { for } \xi<\eta \in J
$$ and ordered (so as to mimic $P_{x_{\xi}, a_{\xi}}$ for all $\xi<\alpha$)

$(p, H)<(q, J)$ implies
$(p \backslash \max (q)) \cap a_{\xi}=x_{\xi} \cap(\max (q), \max (p)]$ for all $\xi \in J$.

Shelah-Steprans Q and A: Step $2-\omega_{1}$

recursively construct $\mathcal{A}=\left\{a_{\xi} \supset x_{\xi}: \xi \in \omega_{1}\right\}$ as above, so that $\mathcal{A}=\left\{a_{\xi}: \xi \in \omega_{1}\right\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi}={ }^{*} x_{\xi}$ for $\xi<\alpha$, and $\mathbb{N} \backslash a_{\alpha} \notin \operatorname{triv}(\Phi)$
Define $Q_{\alpha} \subset[\mathbb{N}]^{<\omega} \times[\alpha]^{<\omega}$ by

$$
(q, J) \in Q_{\alpha} \text { implies }\left(x_{\xi} \cap a_{\eta}\right) \Delta x_{\eta} \subset \max q \text { for } \xi<\eta \in J
$$ and ordered (so as to mimic $P_{x_{\xi}, a_{\xi}}$ for all $\xi<\alpha$)

$(p, H)<(q, J)$ implies
$(p \backslash \max (q)) \cap a_{\xi}=x_{\xi} \cap(\max (q), \max (p)]$ for all $\xi \in J$.
Simultaneously be selecting an increasing chain (\diamond) of countable elementary submodels so that $Q_{\alpha} \in M_{\alpha}$ and the choice of a_{α} ensures all dense $D \subset Q_{\alpha}$ from M_{α} remain dense in $Q_{\alpha+1}$. (at limits there's a P-ideal issue)

Shelah-Steprans Q and A: Step $2-\omega_{1}$

recursively construct $\mathcal{A}=\left\{a_{\xi} \supset x_{\xi}: \xi \in \omega_{1}\right\}$ as above, so that $\mathcal{A}=\left\{a_{\xi}: \xi \in \omega_{1}\right\}$ is mod fin increasing and $x_{\alpha} \cap a_{\xi}={ }^{*} x_{\xi}$ for $\xi<\alpha$, and $\mathbb{N} \backslash a_{\alpha} \notin \operatorname{triv}(\Phi)$
Define $Q_{\alpha} \subset[\mathbb{N}]^{<\omega} \times[\alpha]^{<\omega}$ by

$$
(q, J) \in Q_{\alpha} \text { implies }\left(x_{\xi} \cap a_{\eta}\right) \Delta x_{\eta} \subset \max q \text { for } \xi<\eta \in J
$$

and ordered (so as to mimic $P_{x_{\xi}, a_{\xi}}$ for all $\xi<\alpha$)
$(p, H)<(q, J)$ implies
$(p \backslash \max (q)) \cap a_{\xi}=x_{\xi} \cap(\max (q), \max (p)]$ for all $\xi \in J$.
Simultaneously be selecting an increasing chain (\diamond) of countable elementary submodels so that $Q_{\alpha} \in M_{\alpha}$ and the choice of a_{α} ensures all dense $D \subset Q_{\alpha}$ from M_{α} remain dense in $Q_{\alpha+1}$. (at limits there's a P-ideal issue)

Also ensure that for all $\dot{Y} \in M_{\alpha}$ which are Q_{α}-names, $\dot{Y} g_{x_{\alpha}, a_{\alpha}} \cap \Phi\left(a_{\alpha}\right) \not \mathcal{F}^{*} \Phi\left(x_{\alpha}\right)$.

what does this get us?

One of the roles the models M_{α} is to ensure that $Q_{\omega_{1}}\left(\operatorname{or} Q_{\mathcal{A}}\right)$ is ccc (easy-ish \diamond argument).

what does this get us?

One of the roles the models M_{α} is to ensure that $Q_{\omega_{1}}\left(\operatorname{or} Q_{\mathcal{A}}\right)$ is ccc (easy-ish \diamond argument).

Thus if \dot{Y} is a nice $Q_{\omega_{1}}$-name of a subset of \mathbb{N}, there is an α such that $\dot{Y} \in M_{\alpha}$.

what does this get us?

One of the roles the models M_{α} is to ensure that $Q_{\omega_{1}}\left(\operatorname{or} Q_{\mathcal{A}}\right)$ is ccc (easy-ish \diamond argument).

Thus if \dot{Y} is a nice $Q_{\omega_{1}}$-name of a subset of \mathbb{N}, there is an α such that $\dot{Y} \in M_{\alpha}$.

Let $G \subset Q_{\omega_{1}}$ be generic and let $g=\bigcup\{p: \exists H(p, H) \in G\}$. For each $\alpha \in \omega_{1}$, there is a p_{α} so that $\left(p_{\alpha},\{\alpha\}\right) \in G$, and with $p_{\alpha} \subset n_{\alpha}$ we have that $\left(g \cap a_{\alpha}\right) \Delta x_{\alpha} \subset n_{\alpha}$.

what does this get us?

One of the roles the models M_{α} is to ensure that $Q_{\omega_{1}}\left(\right.$ or $\left.Q_{\mathcal{A}}\right)$ is ccc (easy-ish \diamond argument).

Thus if \dot{Y} is a nice $Q_{\omega_{1}}$-name of a subset of \mathbb{N}, there is an α such that $\dot{Y} \in M_{\alpha}$.

Let $G \subset Q_{\omega_{1}}$ be generic and let $g=\bigcup\{p: \exists H(p, H) \in G\}$. For each $\alpha \in \omega_{1}$, there is a p_{α} so that $\left(p_{\alpha},\{\alpha\}\right) \in G$, and with $p_{\alpha} \subset n_{\alpha}$ we have that $\left(g \cap a_{\alpha}\right) \Delta x_{\alpha} \subset n_{\alpha}$.

The choice of $a_{\alpha} \supset x_{\alpha}$ and the fact that $g=^{*} x_{\alpha} \cup\left(g \backslash a_{\alpha}\right)$ is sufficiently $\left(Q_{\alpha}\right)_{x_{\alpha}, a_{\alpha}}$-generic, we have that $\dot{Y}_{g} \cap \Phi\left(a_{\alpha}\right) \not \neq^{*} \Phi\left(x_{\alpha}\right)$.

what does this get us?

One of the roles the models M_{α} is to ensure that $Q_{\omega_{1}}\left(\right.$ or $\left.Q_{\mathcal{A}}\right)$ is ccc (easy-ish \diamond argument).

Thus if \dot{Y} is a nice $Q_{\omega_{1}}$-name of a subset of \mathbb{N}, there is an α such that $\dot{Y} \in M_{\alpha}$.

Let $G \subset Q_{\omega_{1}}$ be generic and let $g=\bigcup\{p: \exists H(p, H) \in G\}$. For each $\alpha \in \omega_{1}$, there is a p_{α} so that $\left(p_{\alpha},\{\alpha\}\right) \in G$, and with $p_{\alpha} \subset n_{\alpha}$ we have that $\left(g \cap a_{\alpha}\right) \Delta x_{\alpha} \subset n_{\alpha}$.

The choice of $a_{\alpha} \supset x_{\alpha}$ and the fact that $g={ }^{*} x_{\alpha} \cup\left(g \backslash a_{\alpha}\right)$ is sufficiently $\left(Q_{\alpha}\right)_{x_{\alpha}, a_{\alpha}}$-generic, we have that $\dot{Y}_{g} \cap \Phi\left(a_{\alpha}\right) \not \neq^{*} \Phi\left(x_{\alpha}\right)$.

All this adds up to $\left\{c_{\alpha}=\Phi\left(x_{\alpha}\right), d_{\alpha}=\Phi\left(a_{\alpha} \backslash x_{\alpha}\right): \alpha \in \omega_{1}\right\}$ is a freezable gap (while $\left\{x_{\alpha},\left(a_{\alpha} \backslash x_{\alpha}\right)\right\}$ is split by g).

I know this is taking a while

pulling it all back via PFA, there is a sequence $\left\{a_{\alpha} \supset x_{\alpha}: \alpha \in \omega_{1}\right\}$ and a set $X \subset \mathbb{N}$ such that $X \cap a_{\alpha}={ }^{*} x_{\alpha}$ for all α, but, there is no set Y such that $Y \cap F\left(a_{\alpha}\right)={ }^{*} F\left(x_{\alpha}\right)$.

I know this is taking a while

pulling it all back via PFA, there is a sequence $\left\{a_{\alpha} \supset x_{\alpha}: \alpha \in \omega_{1}\right\}$ and a set $X \subset \mathbb{N}$ such that $X \cap a_{\alpha}={ }^{*} x_{\alpha}$ for all α, but, there is no set Y such that $Y \cap F\left(a_{\alpha}\right)={ }^{*} F\left(x_{\alpha}\right)$.
so it must fail. which means $\operatorname{triv}(\Phi) \neq \emptyset$

I know this is taking a while

pulling it all back via PFA, there is a sequence $\left\{a_{\alpha} \supset x_{\alpha}: \alpha \in \omega_{1}\right\}$ and a set $X \subset \mathbb{N}$ such that $X \cap a_{\alpha}={ }^{*} x_{\alpha}$ for all α, but, there is no set Y such that $Y \cap F\left(a_{\alpha}\right)={ }^{*} F\left(x_{\alpha}\right)$.
so it must fail. which means $\operatorname{triv}(\Phi) \neq \emptyset$
in any event,

I know this is taking a while

pulling it all back via PFA, there is a sequence $\left\{a_{\alpha} \supset x_{\alpha}: \alpha \in \omega_{1}\right\}$ and a set $X \subset \mathbb{N}$ such that $X \cap a_{\alpha}={ }^{*} x_{\alpha}$ for all α, but, there is no set Y such that $Y \cap F\left(a_{\alpha}\right)={ }^{*} F\left(x_{\alpha}\right)$.
so it must fail. which means $\operatorname{triv}(\Phi) \neq \emptyset$
in any event,
Theorem: if we are stuck in choosing $a_{\alpha} \supset x_{\alpha}$, it is because $\operatorname{triv}(\Phi)$ is ccc over fin and $\Vdash_{Q_{\alpha}} \Phi \upharpoonright\left\{\boldsymbol{a}_{\beta}: \beta<\alpha\right\}^{\perp} \cap V=\mathcal{J}$ is σ-Borel. (hence trivial on each $b \in \mathcal{J}$)

I know this is taking a while

pulling it all back via PFA, there is a sequence $\left\{a_{\alpha} \supset x_{\alpha}: \alpha \in \omega_{1}\right\}$ and a set $X \subset \mathbb{N}$ such that $X \cap a_{\alpha}={ }^{*} x_{\alpha}$ for all α, but, there is no set Y such that $Y \cap F\left(a_{\alpha}\right)={ }^{*} F\left(x_{\alpha}\right)$.
so it must fail. which means $\operatorname{triv}(\Phi) \neq \emptyset$
in any event,
Theorem: if we are stuck in choosing $a_{\alpha} \supset x_{\alpha}$, it is because $\operatorname{triv}(\Phi)$ is ccc over fin and $\Vdash_{Q_{\alpha}} \Phi \upharpoonright\left\{a_{\beta}: \beta<\alpha\right\}^{\perp} \cap V=\mathcal{J}$ is σ-Borel. (hence trivial on each $b \in \mathcal{J}$)
[Velickovic] σ-Borel plus trivial on each member of a P-ideal \mathcal{J} implies there is a single h inducing Φ on each member of \mathcal{J}.

non-trivial embeddings of \mathbb{N}^{*}

now we'd like to note the important theorem of
[Farah] PFA implies that if $K \subset \mathbb{N}^{*}$ is homeomorphic to \mathbb{N}^{*}, then the interior of K is clopen ($=A^{*}$) and $K \backslash A^{*}$ is ccc over fin.

Let f be a homeomorphism from \mathbb{N}^{*} to K. Define the dual homomorphism Φ by $\Phi(X) \subset \mathbb{N}$ is such that $\Phi(X)^{*}=f^{-1}\left(X^{*} \cap K\right)$.

Since $X^{*} \cap \partial K \neq \emptyset$ means that $X \notin \operatorname{triv}(\Phi)$, we have that ∂K is ccc over fin which shows that $\operatorname{int}(K)$ is clopen (i.e. regular closed sets do not have ccc over fin boundary)

some known consequences of trivial on ccc over fin

\mathbb{N}^{*} does not map onto $(\omega \times \omega+1)^{*}$ (let alone not being homeomorphic)

some known consequences of trivial on ccc over fin

\mathbb{N}^{*} does not map onto $(\omega \times \omega+1)^{*}$ (let alone not being homeomorphic)
the measure algebra does not embed in $\mathcal{P}(\mathbb{N}) /$ fin

some known consequences of trivial on ccc over fin

\mathbb{N}^{*} does not map onto $(\omega \times \omega+1)^{*}$ (let alone not being homeomorphic)
the measure algebra does not embed in $\mathcal{P}(\mathbb{N}) /$ fin still open: if \mathbb{N}^{*} maps onto compact ED X, must X be separable?

some known consequences of trivial on ccc over fin

\mathbb{N}^{*} does not map onto $(\omega \times \omega+1)^{*}$ (let alone not being homeomorphic)
the measure algebra does not embed in $\mathcal{P}(\mathbb{N}) /$ fin still open: if \mathbb{N}^{*} maps onto compact ED X, must X be separable?
\mathbb{R}^{*} does not map onto the separable continuum: the Stone-Cech compactification of the long repeating topologist's sine curve (the closure of the graph of $\sin (1 /(x-\lfloor x\rfloor))$)

PFA resolves the 2-to-1 mapping question

Let f be a 2-to-1 map from \mathbb{N}^{*} onto a space K.

PFA resolves the 2-to-1 mapping question

Let f be a 2-to-1 map from \mathbb{N}^{*} onto a space K. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^{*}$ is locally 1 -to- 1 and $f\left[I^{*}\right]$ open in K.

PFA resolves the 2-to-1 mapping question

Let f be a 2-to-1 map from \mathbb{N}^{*} onto a space K. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^{*}$ is locally 1 -to- 1 and $f\left[l^{*}\right]$ open in K.

By MA we are able to show that K is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^{*}$ is 1-to-1 into U.

PFA resolves the 2-to-1 mapping question

Let f be a 2-to-1 map from \mathbb{N}^{*} onto a space K. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^{*}$ is locally 1 -to- 1 and $f\left[I^{*}\right]$ open in K.

By MA we are able to show that K is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^{*}$ is 1-to-1 into U.

Each G_{δ} contained in $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right]$ is contained in interior.

PFA resolves the 2-to-1 mapping question

Let f be a 2-to-1 map from \mathbb{N}^{*} onto a space K. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^{*}$ is locally 1 -to- 1 and $f\left[I^{*}\right]$ open in K.

By MA we are able to show that K is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^{*}$ is 1-to-1 into U.

Each G_{δ} contained in $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right]$ is contained in interior. Proof:

PFA resolves the 2-to-1 mapping question

Let f be a 2-to-1 map from \mathbb{N}^{*} onto a space K. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^{*}$ is locally 1 -to- 1 and $f\left[I^{*}\right]$ open in K.

By MA we are able to show that K is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^{*}$ is 1-to-1 into U.

Each G_{δ} contained in $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right]$ is contained in interior. Proof: Let $\bigcap_{n} U_{n}$ be the G_{δ}. May assume $\overline{U_{n+1}} \subset U_{n}$.

PFA resolves the 2-to-1 mapping question

Let f be a 2-to-1 map from \mathbb{N}^{*} onto a space K. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^{*}$ is locally 1 -to- 1 and $f\left[I^{*}\right]$ open in K.

By MA we are able to show that K is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^{*}$ is 1-to-1 into U.

Each G_{δ} contained in $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right]$ is contained in interior. Proof: Let $\bigcap_{n} U_{n}$ be the G_{δ}. May assume $\overline{U_{n+1}} \subset U_{n}$. Choose $z_{n} \in U_{n} \backslash f\left[a^{*}\right]$ (wlog) for all n.

PFA resolves the 2-to-1 mapping question

Let f be a 2-to-1 map from \mathbb{N}^{*} onto a space K. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^{*}$ is locally 1 -to- 1 and $f\left[l^{*}\right]$ open in K.

By MA we are able to show that K is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^{*}$ is 1-to-1 into U.

Each G_{δ} contained in $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right]$ is contained in interior. Proof: Let $\bigcap_{n} U_{n}$ be the G_{δ}. May assume $\overline{U_{n+1}} \subset U_{n}$. Choose $z_{n} \in U_{n} \backslash f\left[a^{*}\right]$ (wlog) for all n. Thus $f^{-1}\left(\left\{z_{n}\right\}_{n}\right)$ is a discrete set and its closure maps 2-to-1 onto the closure of $\left\{z_{n}\right\}_{n}$.

PFA resolves the 2-to-1 mapping question

Let f be a 2-to- 1 map from \mathbb{N}^{*} onto a space K. Let \mathcal{I} be those $I \subset \mathbb{N}$ such that $f \upharpoonright I^{*}$ is locally 1 -to- 1 and $f\left[\left[^{*}\right]\right.$ open in K.

By MA we are able to show that K is nowhere ccc and that for each open $U \subset K$, there is a $b \subset \mathbb{N}$ such that $f \upharpoonright b^{*}$ is 1-to-1 into U.

Each G_{δ} contained in $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right]$ is contained in interior. Proof: Let $\bigcap_{n} U_{n}$ be the G_{δ}. May assume $\overline{U_{n+1}} \subset U_{n}$. Choose $z_{n} \in U_{n} \backslash f\left[a^{*}\right]$ (wlog) for all n. Thus $f^{-1}\left(\left\{z_{n}\right\}_{n}\right)$ is a discrete set and its closure maps 2 -to-1 onto the closure of $\left\{z_{n}\right\}_{n}$. It follows that the limit points of $\left\{z_{n}\right\}$ while in $\bigcap_{n} U_{n}$ are not in $f\left[a^{*}\right]$.

clopen copies of \mathbb{N}^{*} in K

clopen copies of \mathbb{N}^{*} in K

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f\left[{ }^{*}\right] \subset U$. hence \mathcal{I} is non-empty.

clopen copies of \mathbb{N}^{*} in K

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f\left[H^{*}\right] \subset U$. hence \mathcal{I} is non-empty.

We use the Shelah-Steprans Q and A method.

clopen copies of \mathbb{N}^{*} in K

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f\left[I^{*}\right] \subset U$. hence \mathcal{I} is non-empty.
We use the Shelah-Steprans Q and A method.
Given any $U \subset K$, we can choose disjoint family $\left\{U_{\alpha}: \alpha \in \omega_{1}\right\}$ of open subsets of U.

clopen copies of \mathbb{N}^{*} in K

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f\left[I^{*}\right] \subset U$. hence \mathcal{I} is non-empty.
We use the Shelah-Steprans Q and A method.
Given any $U \subset K$, we can choose disjoint family $\left\{U_{\alpha}: \alpha \in \omega_{1}\right\}$ of open subsets of U. For each α choose $W_{\alpha} \subset \overline{W_{\alpha}} \subset U_{\alpha}$.

clopen copies of \mathbb{N}^{*} in K

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f\left[I^{*}\right] \subset U$. hence \mathcal{I} is non-empty.
We use the Shelah-Steprans Q and A method.
Given any $U \subset K$, we can choose disjoint family $\left\{U_{\alpha}: \alpha \in \omega_{1}\right\}$ of open subsets of U. For each α choose $W_{\alpha} \subset \overline{W_{\alpha}} \subset U_{\alpha}$. Next find $a_{\alpha} \subset \mathbb{N}$ such that $f^{-1}\left(\overline{W_{\alpha}}\right) \subset a_{\alpha}^{*}$ and $a_{\alpha}^{*} \cap f^{-1}\left(K \backslash U_{\alpha}\right)$ is empty.

clopen copies of \mathbb{N}^{*} in K

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f\left[I^{*}\right] \subset U$. hence \mathcal{I} is non-empty.
We use the Shelah-Steprans Q and A method.
Given any $U \subset K$, we can choose disjoint family $\left\{U_{\alpha}: \alpha \in \omega_{1}\right\}$ of open subsets of U. For each α choose $W_{\alpha} \subset \overline{W_{\alpha}} \subset U_{\alpha}$. Next find $a_{\alpha} \subset \mathbb{N}$ such that $f^{-1}\left(\overline{W_{\alpha}}\right) \subset a_{\alpha}^{*}$ and $a_{\alpha}^{*} \cap f^{-1}\left(K \backslash U_{\alpha}\right)$ is empty. Thus $f\left[\left(\mathbb{N} \backslash a_{\alpha}\right)^{*}\right]$ is disjoint from W_{α}.

clopen copies of \mathbb{N}^{*} in K

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f\left[{ }^{*}\right] \subset U$. hence \mathcal{I} is non-empty.
We use the Shelah-Steprans Q and A method.
Given any $U \subset K$, we can choose disjoint family $\left\{U_{\alpha}: \alpha \in \omega_{1}\right\}$ of open subsets of U. For each α choose $W_{\alpha} \subset W_{\alpha} \subset U_{\alpha}$. Next find $a_{\alpha} \subset \mathbb{N}$ such that $f^{-1}\left(\overline{W_{\alpha}}\right) \subset a_{\alpha}^{*}$ and $a_{\alpha}^{*} \cap f^{-1}\left(K \backslash U_{\alpha}\right)$ is empty. Thus $f\left[\left(\mathbb{N} \backslash a_{\alpha}\right)^{*}\right]$ is disjoint from W_{α}.

Fix any infinite $b_{\alpha} \subset a_{\alpha}$ such that $f\left[b_{\alpha}^{*}\right] \subset W_{\alpha}$ and $f \upharpoonright b_{\alpha}^{*}$ is 1-to-1.

clopen copies of \mathbb{N}^{*} in K

Lemma 2: for each open $U \subset K$, there is an $I \in \mathcal{I}$ such that $f\left[l^{*}\right] \subset U$. hence \mathcal{I} is non-empty.
We use the Shelah-Steprans Q and A method.
Given any $U \subset K$, we can choose disjoint family $\left\{U_{\alpha}: \alpha \in \omega_{1}\right\}$ of open subsets of U. For each α choose $W_{\alpha} \subset W_{\alpha} \subset U_{\alpha}$. Next find $a_{\alpha} \subset \mathbb{N}$ such that $f^{-1}\left(\overline{W_{\alpha}}\right) \subset a_{\alpha}^{*}$ and $a_{\alpha}^{*} \cap f^{-1}\left(K \backslash U_{\alpha}\right)$ is empty. Thus $f\left[\left(\mathbb{N} \backslash a_{\alpha}\right)^{*}\right]$ is disjoint from W_{α}.

Fix any infinite $b_{\alpha} \subset a_{\alpha}$ such that $f\left[b_{\alpha}^{*}\right] \subset W_{\alpha}$ and $f \upharpoonright b_{\alpha}^{*}$ is 1 -to-1. If $f\left[b_{\alpha}^{*}\right]$ has any interior, we have succeeded. So, we assume instead, that for all $\alpha, f\left[b_{\alpha}^{*}\right]$ is nowhere dense.

II. PFA and automorphisms

Before continuing, we ask if there is some such selection for which there is a set $A \subset \mathbb{N}$ such that $A \cap b_{\alpha}={ }^{*} \emptyset$ and $c_{\alpha}=A \cap a_{\alpha}$ still satisfies that $f\left[c_{\alpha}^{*}\right] \supset f\left[b_{\alpha}^{*}\right]$.

Before continuing, we ask if there is some such selection for which there is a set $A \subset \mathbb{N}$ such that $A \cap b_{\alpha}={ }^{*} \emptyset$ and $c_{\alpha}=A \cap a_{\alpha}$ still satisfies that $f\left[c_{\alpha}^{*}\right] \supset f\left[b_{\alpha}^{*}\right]$. If so, make this selection instead.

Before continuing, we ask if there is some such selection for which there is a set $A \subset \mathbb{N}$ such that $A \cap b_{\alpha}={ }^{*} \emptyset$ and $c_{\alpha}=A \cap a_{\alpha}$ still satisfies that $f\left[c_{\alpha}^{*}\right] \supset f\left[b_{\alpha}^{*}\right]$. If so, make this selection instead.

For each α then, there is a closed set $K_{\alpha} \subset c_{\alpha}^{*}=\left(a_{\alpha} \backslash b_{\alpha}\right)^{*}$ such that $f\left[K_{\alpha}\right]=f\left[b_{\alpha}^{*}\right]$

Before continuing, we ask if there is some such selection for which there is a set $A \subset \mathbb{N}$ such that $A \cap b_{\alpha}={ }^{*} \emptyset$ and $c_{\alpha}=A \cap a_{\alpha}$ still satisfies that $f\left[c_{\alpha}^{*}\right] \supset f\left[b_{\alpha}^{*}\right]$. If so, make this selection instead.

For each α then, there is a closed set $K_{\alpha} \subset c_{\alpha}^{*}=\left(a_{\alpha} \backslash b_{\alpha}\right)^{*}$ such that $f\left[K_{\alpha}\right]=f\left[b_{\alpha}^{*}\right]$
i.e. there is a homomorphism H_{α} from $\mathcal{P}\left(c_{\alpha}\right)$ onto $\mathcal{P}\left(b_{\alpha}\right)$.

Before continuing, we ask if there is some such selection for which there is a set $A \subset \mathbb{N}$ such that $A \cap b_{\alpha}={ }^{*} \emptyset$ and $c_{\alpha}=A \cap a_{\alpha}$ still satisfies that $f\left[c_{\alpha}^{*}\right] \supset f\left[b_{\alpha}^{*}\right]$. If so, make this selection instead.

For each α then, there is a closed set $K_{\alpha} \subset c_{\alpha}^{*}=\left(a_{\alpha} \backslash b_{\alpha}\right)^{*}$ such that $f\left[K_{\alpha}\right]=f\left[b_{\alpha}^{*}\right]$
i.e. there is a homomorphism H_{α} from $\mathcal{P}\left(c_{\alpha}\right)$ onto $\mathcal{P}\left(b_{\alpha}\right)$.

Following the Shelah-Steprans method, we can force with $<\omega_{1} 2$ and then construct a sequence $\left\{c_{\alpha}, d_{\alpha}: \alpha \in \omega_{1}\right\}$, so that the poset $Q_{\omega_{1}}$ is ccc and we obtain a gap from $\left\{H_{\alpha}\left(d_{\alpha}\right), H_{\alpha}\left(c_{\alpha} \backslash d_{\alpha}\right): \alpha \in \omega_{1}\right\}$.

II. PFA and automorphisms

This gives us a set X (forced by $Q_{\omega_{1}}$) satisfying that $X \cap c_{\alpha}={ }^{*} d_{\alpha}$ for all α. We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}\left(d_{\alpha}\right)$.

This gives us a set X (forced by $Q_{\omega_{1}}$) satisfying that $X \cap c_{\alpha}={ }^{*} d_{\alpha}$ for all α. We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}\left(d_{\alpha}\right)$. By symmetry, we may assume that $\tilde{b}_{\alpha}=H_{\alpha}\left(d_{\alpha}\right) \backslash X$ is infinite.

This gives us a set X (forced by $Q_{\omega_{1}}$) satisfying that $X \cap c_{\alpha}={ }^{*} d_{\alpha}$ for all α. We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}\left(d_{\alpha}\right)$. By symmetry, we may assume that $\tilde{b}_{\alpha}=H_{\alpha}\left(d_{\alpha}\right) \backslash X$ is infinite. By the definition of H_{α}, it follows that $f\left[d_{\alpha}^{*}\right] \supset f\left[\tilde{b}_{\alpha}^{*}\right]$ and that X does separate the family of such d_{α} 's and the \tilde{b}_{α} 's.

This gives us a set X (forced by $Q_{\omega_{1}}$) satisfying that $X \cap c_{\alpha}={ }^{*} d_{\alpha}$ for all α. We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}\left(d_{\alpha}\right)$. By symmetry, we may assume that $\tilde{b}_{\alpha}=H_{\alpha}\left(d_{\alpha}\right) \backslash X$ is infinite. By the definition of H_{α}, it follows that $f\left[d_{\alpha}^{*}\right] \supset f\left[\tilde{b}_{\alpha}^{*}\right]$ and that X does separate the family of such d_{α} 's and the $\tilde{b}{ }_{\alpha}$'s. This means that we were able to choose A as above, and that we may assume that $X \subset A$.

This gives us a set X (forced by $Q_{\omega_{1}}$) satisfying that $X \cap c_{\alpha}={ }^{*} d_{\alpha}$ for all α. We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}\left(d_{\alpha}\right)$.
By symmetry, we may assume that $\tilde{b}_{\alpha}=H_{\alpha}\left(d_{\alpha}\right) \backslash X$ is infinite. By the definition of H_{α}, it follows that $f\left[d_{\alpha}^{*}\right] \supset f\left[\tilde{b}_{\alpha}^{*}\right]$ and that X does separate the family of such d_{α} 's and the $\tilde{b}{ }_{\alpha}$'s. This means that we were able to choose A as above, and that we may assume that $X \subset A$.

We have the gap $\left\{H_{\alpha}\left(d_{\alpha}\right), b_{\alpha} \backslash H_{\alpha}\left(d_{\alpha}\right): \alpha \in \omega_{1}\right\}$, which implies there is a point w in $\overline{\bigcup_{\alpha}\left(H_{\alpha}\left(d_{\alpha}\right)\right)^{*}} \cap \bigcup_{\alpha}\left(b_{\alpha} \backslash H_{\alpha}\left(d_{\alpha}\right)\right)^{*} \subset(\mathbb{N} \backslash A)^{*}$

This gives us a set X (forced by $Q_{\omega_{1}}$) satisfying that $X \cap c_{\alpha}={ }^{*} d_{\alpha}$ for all α. We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}\left(d_{\alpha}\right)$.
By symmetry, we may assume that $\tilde{b}_{\alpha}=H_{\alpha}\left(d_{\alpha}\right) \backslash X$ is infinite. By the definition of H_{α}, it follows that $f\left[d_{\alpha}^{*}\right] \supset f\left[\tilde{b}_{\alpha}^{*}\right]$ and that X does separate the family of such d_{α} 's and the $\tilde{b}{ }_{\alpha}$'s. This means that we were able to choose A as above, and that we may assume that $X \subset A$.

We have the gap $\left\{H_{\alpha}\left(d_{\alpha}\right), b_{\alpha} \backslash H_{\alpha}\left(d_{\alpha}\right): \alpha \in \omega_{1}\right\}$, which implies there is a point w in $\bigcup_{\alpha}\left(H_{\alpha}\left(d_{\alpha}\right)\right)^{*} \cap \bigcup_{\alpha}\left(b_{\alpha} \backslash H_{\alpha}\left(d_{\alpha}\right)\right)^{*} \subset(\mathbb{N} \backslash A)^{*}$

$$
\begin{aligned}
& f\left[(A \cap X)^{*}\right] \supset f\left[\bigcup_{\alpha}\left(H_{\alpha}\left(d_{\alpha}\right)\right)^{*}\right] \text { and } \\
& \quad f\left[(A \backslash X)^{*}\right] \supset f\left[\overline{\bigcup_{\alpha}\left(b_{\alpha} \backslash H_{\alpha}\left(d_{\alpha}\right)\right)^{*}}\right] .
\end{aligned}
$$

This gives us a set X (forced by $Q_{\omega_{1}}$) satisfying that $X \cap c_{\alpha}={ }^{*} d_{\alpha}$ for all α. We are sure that there are uncountably many α such that $X \cap b_{\alpha}$ is not mod finite equal to $H_{\alpha}\left(d_{\alpha}\right)$.
By symmetry, we may assume that $\tilde{b}_{\alpha}=H_{\alpha}\left(d_{\alpha}\right) \backslash X$ is infinite. By the definition of H_{α}, it follows that $f\left[d_{\alpha}^{*}\right] \supset f\left[\tilde{b}_{\alpha}^{*}\right]$ and that X does separate the family of such d_{α} 's and the $\tilde{b}{ }_{\alpha}$'s. This means that we were able to choose A as above, and that we may assume that $X \subset A$.

We have the gap $\left\{H_{\alpha}\left(d_{\alpha}\right), b_{\alpha} \backslash H_{\alpha}\left(d_{\alpha}\right): \alpha \in \omega_{1}\right\}$, which implies there is a point w in $\overline{\bigcup_{\alpha}\left(H_{\alpha}\left(d_{\alpha}\right)\right)^{*}} \cap \bigcup_{\alpha}\left(b_{\alpha} \backslash H_{\alpha}\left(d_{\alpha}\right)\right)^{*} \subset(\mathbb{N} \backslash A)^{*}$

$$
\begin{aligned}
& f\left[(A \cap X)^{*}\right] \supset f\left[\bigcup_{\alpha}\left(H_{\alpha}\left(d_{\alpha}\right)\right)^{*}\right] \text { and } \\
& \quad f\left[(A \backslash X)^{*}\right] \supset f\left[\overline{\bigcup_{\alpha}\left(b_{\alpha} \backslash H_{\alpha}\left(d_{\alpha}\right)\right)^{*}}\right] .
\end{aligned}
$$

That means $f(w)$ has 3 points in its preimage!

non-empty G_{δ} 's have non-empty interior

Next Lemma: K has the property that non-empty G_{δ} 's have non-empty interior. (uses Farah's theorem)

Let $\left\{U_{n}\right\}_{n}$ be the sequence of open sets such that $\overline{U_{n+1}} \subset U_{n}$. For each n, we have some $\left(b_{n} \cup c_{n}\right) \in \mathcal{I}$ such that $f\left[b_{n}^{*}\right]=f\left[c_{n}^{*}\right] \subset U_{n} \backslash U_{n+1}$ and is a clopen subset of K.

For each $n, f^{-1}\left(U_{n}\right)$ is an open set in \mathbb{N}^{*} which contains the closure of $\bigcup_{k \geq n}\left(b_{k} \cup c_{k}\right)^{*}$. Thus we can arrange that $\left(U_{k \geq n}\left(b_{k} \cup c_{k}\right)\right)^{*}$ is contained in $f^{-1}\left(U_{n}\right)$ for each n. If $U=K \backslash f\left[\left(\mathbb{N} \backslash \bigcup_{n} b_{n}\right)^{*}\right] \subset \bigcap_{n} U_{n}$ is not empty then we are done.
o / w, set $b=\bigcup_{n} b_{n}$ and notice that $f \upharpoonright b^{*}$ must be 1-to-1 (since $\left.f\left[(\mathbb{N} \backslash b)^{*}\right] \supset f\left[b^{*}\right]\right)$.

By Farah's theorem, the canonical embedding given by $f^{-1} \circ f$ from b^{*} into $(\mathbb{N} \backslash b)^{*}$ will have the form $a^{*} \cup S$ where S is some nowhere dense set. Since c_{n}^{*} is contained in this image for each n, it follows that $c_{n} \subset^{*}$ a for each n. Choose any infinite $c \subset$ a such that $c \cap c_{n}$ is finite for each n. It follows that there is a $\tilde{b} \subset b$ such that $f\left[\tilde{b}^{*}\right]=f\left[c^{*}\right] \subset \bigcap_{n} U_{n}$ and again we have demonstrated that $\bigcap_{n} U_{n}$ contains an open set.

By Farah's theorem, the canonical embedding given by $f^{-1} \circ f$ from b^{*} into $(\mathbb{N} \backslash b)^{*}$ will have the form $a^{*} \cup S$ where S is some nowhere dense set. Since c_{n}^{*} is contained in this image for each n, it follows that $c_{n} \subset^{*}$ a for each n. Choose any infinite $c \subset$ a such that $c \cap c_{n}$ is finite for each n. It follows that there is a $\tilde{b} \subset b$ such that $f\left[\tilde{b}^{*}\right]=f\left[c^{*}\right] \subset \bigcap_{n} U_{n}$ and again we have demonstrated that $\bigcap_{n} U_{n}$ contains an open set.

By Farah's theorem, the canonical embedding given by $f^{-1} \circ f$ from b^{*} into $(\mathbb{N} \backslash b)^{*}$ will have the form $a^{*} \cup S$ where S is some nowhere dense set. Since c_{n}^{*} is contained in this image for each n, it follows that $c_{n} \subset^{*}$ a for each n. Choose any infinite $c \subset$ a such that $c \cap c_{n}$ is finite for each n. It follows that there is a $\tilde{b} \subset b$ such that $f\left[\tilde{b}^{*}\right]=f\left[c^{*}\right] \subset \bigcap_{n} U_{n}$ and again we have demonstrated that $\bigcap_{n} U_{n}$ contains an open set.

Then we use the CH * Cohen * OCA trick to finish as follows.

By Farah's theorem, the canonical embedding given by $f^{-1} \circ f$ from b^{*} into $(\mathbb{N} \backslash b)^{*}$ will have the form $a^{*} \cup S$ where S is some nowhere dense set. Since c_{n}^{*} is contained in this image for each n, it follows that $c_{n} \subset^{*}$ a for each n. Choose any infinite $c \subset a$ such that $c \cap c_{n}$ is finite for each n. It follows that there is a $\tilde{b} \subset b$ such that $f\left[\tilde{b}^{*}\right]=f\left[c^{*}\right] \subset \bigcap_{n} U_{n}$ and again we have demonstrated that $\bigcap_{n} U_{n}$ contains an open set.

Then we use the CH * Cohen * OCA trick to finish as follows.
Let $x \in \mathbb{N}^{*}$ be any point witnessing that f is not locally 1 -to- 1 .

By Farah's theorem, the canonical embedding given by $f^{-1} \circ f$ from b^{*} into $(\mathbb{N} \backslash b)^{*}$ will have the form $a^{*} \cup S$ where S is some nowhere dense set. Since c_{n}^{*} is contained in this image for each n, it follows that $c_{n} \subset^{*}$ a for each n. Choose any infinite $c \subset a$ such that $c \cap c_{n}$ is finite for each n. It follows that there is a $\tilde{b} \subset b$ such that $f\left[\tilde{b}^{*}\right]=f\left[c^{*}\right] \subset \bigcap_{n} U_{n}$ and again we have demonstrated that $\bigcap_{n} U_{n}$ contains an open set.

Then we use the CH * Cohen * OCA trick to finish as follows.
Let $x \in \mathbb{N}^{*}$ be any point witnessing that f is not locally 1 -to- 1 .
To save time, just assert that using non-empty G_{δ} 's have non-empty interior in K, we can construct a sequence $\left\{a_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathcal{I}$ converging to x

Probably skip the construction of $\left\{a_{\alpha}: \alpha \in \omega_{1}\right\}$

Fix any $E \in x$ such that $f(x) \in f\left[(\mathbb{N} \backslash E)^{*}\right]$. If there were any G_{δ} of K containing $f(x)$ and contained in $f\left[E^{*}\right] \cap f\left[(\mathbb{N} \backslash E)^{*}\right]$, then f would be locally 1 -to- 1 at x.

Suppose we are given any countable $\mathcal{A} \subset x$, we may by enlarging \mathcal{A} assume that for each $a \in \mathcal{A}$, there is an $\tilde{a} \in \mathcal{A}$ such that $f\left[\tilde{a}^{*}\right] \cap f\left[(E \backslash a)^{*}\right]$ is empty.
$K \backslash \bigcup_{a \in \mathcal{A}} f\left[(E \backslash a)^{*}\right]$ is a G_{δ} containing $f(x)$ and so can not be contained in $f\left[(\mathbb{N} \backslash E)^{*}\right]$.
And since it has dense interior, there is a $b \in \mathcal{I}$ such that $f\left[b^{*}\right] \subset U$. It is easily checked that $b \prec \mathcal{A}$.

This completes the proof that given countable \mathcal{A} from x, there is a $b \prec \mathcal{A}$ such that $b \in \mathcal{I}$.

now we finish the proof

now we finish the proof

Give the sequence $\left\{a_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathcal{I}$ converging to x,

now we finish the proof

Give the sequence $\left\{\boldsymbol{a}_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathcal{I}$ converging to x, there are mappings $h_{\alpha}: a_{\alpha} \mapsto a_{\alpha}$ such that $h_{\alpha}^{2}=i d$ and $h_{\alpha}(n) \neq n$. (i.e. h_{α} induces $f^{-1} \circ f$), then for all uncountable $I \subset \omega_{1}, \bigcup_{\alpha \in I} h_{\alpha}$ is not 1-to-1 on any member of x.

now we finish the proof

Give the sequence $\left\{\boldsymbol{a}_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathcal{I}$ converging to x, there are mappings $h_{\alpha}: a_{\alpha} \mapsto a_{\alpha}$ such that $h_{\alpha}^{2}=i d$ and $h_{\alpha}(n) \neq n$. (i.e. h_{α} induces $f^{-1} \circ f$), then for all uncountable $I \subset \omega_{1}, \bigcup_{\alpha \in I} h_{\alpha}$ is not 1-to-1 on any member of x.

Force with $3^{<\mathbb{N}}$ thus adding a partition C_{0}, C_{1}, C_{2}

now we finish the proof

Give the sequence $\left\{\boldsymbol{a}_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathcal{I}$ converging to x, there are mappings $h_{\alpha}: a_{\alpha} \mapsto a_{\alpha}$ such that $h_{\alpha}^{2}=i d$ and $h_{\alpha}(n) \neq n$. (i.e. h_{α} induces $f^{-1} \circ f$), then for all uncountable $I \subset \omega_{1}, \bigcup_{\alpha \in I} h_{\alpha}$ is not 1-to-1 on any member of x.

Force with $3^{<\mathbb{N}}$ thus adding a partition C_{0}, C_{1}, C_{2} $(\alpha, \beta) \in R$ (per OCA) if there are $i \in C_{0} \cap a_{\alpha}, j \in C_{1} \cap a_{\beta}$ so that $h_{\alpha}(i)=h_{\beta}(j) \in C_{2}$.

now we finish the proof

Give the sequence $\left\{\boldsymbol{a}_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathcal{I}$ converging to x, there are mappings $h_{\alpha}: a_{\alpha} \mapsto a_{\alpha}$ such that $h_{\alpha}^{2}=i d$ and $h_{\alpha}(n) \neq n$. (i.e. h_{α} induces $f^{-1} \circ f$), then for all uncountable $I \subset \omega_{1}, \bigcup_{\alpha \in I} h_{\alpha}$ is not 1-to-1 on any member of x.

Force with $3^{<\mathbb{N}}$ thus adding a partition C_{0}, C_{1}, C_{2} $(\alpha, \beta) \in R$ (per OCA) if there are $i \in C_{0} \cap a_{\alpha}, j \in C_{1} \cap a_{\beta}$ so that $h_{\alpha}(i)=h_{\beta}(j) \in C_{2}$.
$\left\{C_{2} \cap h_{\alpha}\left(a_{\alpha} \cap C_{0}\right), \quad C_{2} \cap h_{\alpha}\left(a_{\alpha} \cap C_{1}\right): \alpha \in \omega_{1}\right\}$
forms a gap, and if $w \in C_{2}^{*}$ is in common closure, there are $x \in C_{0}^{*}$ and $y \in C_{1}^{*}$ such that $f(x)=f(w)=f(y)$

